Skip to main content

In und auf den Körpern der Ameisen

  • Chapter
  • First Online:
Die Gäste der Ameisen

Zusammenfassung

Eine der wichtigsten Nischen für Myrmekophile im Ameisen-Superorganismus sind die Körper der einzelnen Ameisen selbst. Einige dieser Körperbewohner sind nur Tramper, wie die vielen Milbenarten, die in den Wäldern der amerikanischen Tropen auf Wanderameisen reiten, oder diejenigen, die sich unter den Köpfen der Ameisen festklammern und die Nahrung direkt aus ihren Mündern stehlen. Andere Parasiten dringen in den Körper der Wirte ein und manipulieren den Körper der Ameisen zu ihrem eigenen Vorteil. Tatsächlich lebt eine Vielzahl von Organismen auf und in den Körpern der einzelnen Ameisen. Einige davon sind für ihre Wirte von Nutzen, da sie in einer mutualistischen (wechselseitig nützlichen) Beziehung zueinanderstehen, während andere lediglich als Kommensale fungieren. Eine große Anzahl dieser Organismen kann jedoch als echte Parasiten betrachtet werden. Die Vielfalt und Anzahl solcher Mitbewohner sind enorm: Sie umfassen, Nematoden, Trematoden, Pilze, einzellige Symbionten und andere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Acharya, U, Acharya, JK. 2005. Enzymes of sphingolipid metabolism in Drosophila melanogaster. Cellular and Molecular Life Sciences, 62: 128–142.

    Article  CAS  PubMed  Google Scholar 

  • Akre, RD, Rettenmeyer, CW. 1968. Trail following by guests of army ants (Hymenoptera: Formicidae: Ecitonini). Journal of the Kansas Entomological Society, 41: 165–174.

    Google Scholar 

  • Andersen, SB, Ferrari, M, Evans, HC, Elliot, SL, Boomsma, JJ, Hughes, DP. 2012. Disease dynamics in a specialized parasite of ant socie ties. PLOS One, 7: e36352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, SB, Gerritsma, S, Yusah, KM, Mayntz, D, Hywel-Jones, NL, Billen, J, Boomsma, JJ, Hughes, DP. 2009. The life of a dead ant: The expression of an adaptive extended phenotype. American Naturalist, 174: 424–433.

    Article  PubMed  Google Scholar 

  • Araújo, JPM, Evans, HC, Kepler, R, Hughes, DP. 2018. Zombie ant fungi across continents: 15 new species and new combinations within Ophiocordyceps, I: Myrmecophilous hirsutelloid species. Studies in Mycology, 90: 119–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo, JPM, Hughes, DP. 2016. Diversity of entomopathogenic fungi: Which groups conquered the insect body? Advances in Genetics, 94: 1–39.

    Article  PubMed  Google Scholar 

  • Ayre, G. 1962. Pseudometagea schwarzii (Ashm.) (Eucharitidae: Hymenoptera), a parasite of Lasius neoniger Emery (Formicidae: Hymenoptera). Canadian Journal of Zoology, 40: 157–164.

    Article  Google Scholar 

  • Baker, AJ, Heraty, JM, Mottern, J, Zhang, J, Hines, HM, Lemmon, AR, Lemmon, EM. 2020. Inverse dispersal patterns in a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae) and their ant hosts. Systematic Entomology, 45: 1–19.

    Article  Google Scholar 

  • Baumann, P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap sucking insects. Annual Review of Microbiology, 59: 155–189.

    Article  CAS  PubMed  Google Scholar 

  • Berghoff, SM, Wurst, E, Ebermann, E, Sendova-Franks, AB, Rettenmeyer, CW, Franks, NR. 2009. Symbionts of societies that fission: Mites as guests or parasites of army ants. Ecological Entomology, 34: 684–695.

    Article  Google Scholar 

  • Beros, S, Jongepier, E, Hagemeier, F, Foitzik, S. 2015. The parasite’s long arm: A tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proceedings of the Royal Society B: Biological Sciences, 282: 20151473.

    Article  PubMed Central  Google Scholar 

  • Birer, C, Moreau, CS, Tysklind, N, Zinger, L, Duplais, C. 2020. Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Molecular Ecology, 29: 1372–1385.

    Article  CAS  PubMed  Google Scholar 

  • Borgmeier, T. 1958. Neue Beitraege zur Kenntnis der neotropischen Phoriden (Diptera, Phoridae). Studia Entomologica, 1: 305–406.

    Google Scholar 

  • Borowiec, ML. 2013. Two species of myrmecophilous Diapriidae (Hymenoptera) new to Poland. Wiadomosci Entomologiczne, 32: 42–48.

    Google Scholar 

  • Bragança, MAL, Arruda, FV, Souza, LRR, Martins, HC, Della Lucia, TMC. 2016. Phorid flies parasitizing leaf-cutting ants: Their occurrence, parasitism rates, biology and the first account of multiparasitism. Sociobiology, 63: 1015–1021.

    Article  Google Scholar 

  • Bragança, MAL, Tonhasca, A Jr, Della Lucia, TM. 1998. Reduction in the foraging activity of the leaf-cutting ant Atta sexdens caused by the phorid Neodohrniphora sp. Entomologia Experimentalis et Applicata, 89: 305–311.

    Article  Google Scholar 

  • Brown, BV. 2012. Small size no protection for acrobat ants: World’s smallest fly is a parasitic phorid (Diptera: Phoridae). Annals of the Entomological Society of America, 105: 550–554.

    Article  Google Scholar 

  • Brown, BV, Feener, DH. 1998. Parasitic phorid flies (Diptera: Phoridae) associated with army ants (Hymenoptera: Formicidae: Ecitoninae, Dorylinae) and their conservation biology. Biotropica, 30: 482–487.

    Article  Google Scholar 

  • Brown, BV, Feener, DH Jr. 1991. Behavior and host location cues of Apocephalus paraponerae (Diptera: Phoridae), a parasitoid of the giant tropical ant, Paraponera clavata (Hymenoptera: Formicidae). Biotropica, 23: 182–187.

    Article  Google Scholar 

  • Brown, BV, Hash, JM, Hartop, EA, Porras, W, de Souza Amorim, D. 2017. Baby killers: Documentation and evolution of scuttle fly (Diptera: Phoridae) parasitism of ant (Hymenoptera: Formicidae) brood. Biodiversity Data Journal, 5: e11277.

    Article  Google Scholar 

  • Brückner, A, Klompen, H, Bruce, AI, Hashim, R, von Beeren, C. 2018. Infection of army ant pupae by two new parasitoid mites (Mesostigmata: Uropodina). PeerJ, 5: e3870.

    Article  Google Scholar 

  • Buschinger, A. 1973. Ameisen des Tribus Leptothoracini (Hym., Formicidae) als Zwischenwirte von Cestoden. Zoologischer Anzeiger, 191: 369–380.

    Google Scholar 

  • Campbell, KU, Klompen, H, Crist, TO. 2013. The diversity and host specificity of mites associated with ants: The roles of ecological and life history traits of ant hosts. Insectes Sociaux, 60: 31–41.

    Article  Google Scholar 

  • Cannon, PF, Hywel-Jones, NL, Maczey, N, Norbu, L, Samdup, T, Lhendup, P. 2009. Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodiversity and Conservation, 18: 2263–2281.

    Article  Google Scholar 

  • Carey, B, Visscher, K, Heraty, J. 2012. Nectary use for gaining access to an ant host by the parasitoid Orasema simulatrix (Hymenoptera, Eucharitidae). Journal of Hymenoptera Research, 27: 47–65.

    Article  Google Scholar 

  • Carney, WP. 1969. Behavioral and morphological changes in carpenter ants harboring dicrocoeliid metacercariae. American Midland Naturalist, 82: 605–611.

    Article  Google Scholar 

  • Chen, L, Fadamiro, HY. 2007. Behavioral and electroantennogram responses of phorid fly Pseudacteon tricuspis (Diptera: Phoridae) to red imported fire ant Solenopsis invicta odor and trail pheromone. Journal of Insect Behavior, 20: 267–287.

    Article  Google Scholar 

  • Chen, L, Fadamiro, HY. 2018. Pseudacteon phorid flies: Host specificity and impacts on Solenopsis fire ants. Annual Review of Entomology, 63: 47–67.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L, Porter, SD. 2020. Biology of Pseudacteon decapitating flies (Diptera: Phoridae) that parasitize ants of the Solenopsis saevissima complex (Hymenoptera: Formicidae) in South America. Insects, 11: 107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choe, J, Perlman, D. 1997. Social conflict and cooperation among founding queens in ants (Hymenoptera: Formicidae). In The Evolution of Social Behavior in Insects and Arachnids, ed. JC Choe, BJ Crespi. Cam-bridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Clausen, CP. 1941. The habits of the Eucharidae. Psyche, 48: 57–69.

    Article  Google Scholar 

  • Corn, M. 1980. Polymorphism and polyethism in the neotropical ant Cephalotes atratus (L.). Insectes Sociaux, 27: 29–42.

    Article  Google Scholar 

  • Csősz, S. 2012. Nematode infection as significant source of unjustified taxonomic descriptions in ants (Hymenoptera: Formicidae). Myrmecological News, 17: 27–31.

    Google Scholar 

  • Darling, DC. 1992. The life history and larval morphology of Aperilampus (Hymenoptera: Chalcidoidea: Philomidinae), with a discussion of the phylogenetic affinities of the Philomidinae. Systematic Entomology, 17: 331–339.

    Article  Google Scholar 

  • Darling, DC. 1999. Life history and immature stages of Steffanolampus salicetum (Hymenoptera: Chalcidoidea: Perilampidae). Proceedings of the Entomological Society of Ontario, 130: 3–14.

    Google Scholar 

  • Darling, DC. 2009. A new species of Smicromorpha (Hymenoptera, Chalcididae) from Vietnam, with notes on the host association of the genus. ZooKeys, 20: 155–163.

    Article  Google Scholar 

  • Darling, DC, Miller, TD. 1991. Life history and larval morphology of Chrysolampus (Hymenoptera: Chalcidoidea: Chrysolampinae) in western North America. Canadian Journal of Zoology, 69: 2168–2177.

    Article  Google Scholar 

  • Dasch, GA, Weiss, E, Chang, KP. 1984. Endosymbiosis of insects. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. JG Holt, NR Krieg. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • de Bekker, C, Merrow, M, Hughes, DP. 2014. From behavior to mechanisms: An integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integrative and Comparative Biology, 54: 166–176.

    Article  PubMed  Google Scholar 

  • de Bekker, C, Ohm, RA, Evans, HC, Brachmann, A, Hughes, DP. 2017. Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Scientific Reports, 7: 12508.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bekker, C, Will, I, Das, B, Adams, RMM. 2018. The ants (Hymenoptera: Formicidae) and their parasites: Effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecological News, 28: 1–24.

    Google Scholar 

  • Degnan, PH, Lazarus, AB, Brock, CD, Wernegreen, JJ. 2004. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Systematic Biology, 53: 95–110.

    Article  PubMed  Google Scholar 

  • Degnan, PH, Lazarus, AB, Wernegreen, JJ. 2005. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome research, 15: 1023–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disney, RHL. 1994. Scuttle flies: The Phoridae. London: Chapman & Hall.

    Book  Google Scholar 

  • Disney, RHL. 1996. A new genus of scuttle fly (Diptera; Phoridae) whose legless, wingless, females mimic ant larvae (Hymenoptera; Formicidae). Sociobiology 27: 95–118.

    Google Scholar 

  • Disney, RHL. 2000. Revision of European Pseudacteon Coquillett (Diptera, Phoridae). Bonner Zoologische Beiträage, 49: 79–92.

    Google Scholar 

  • Disney, RHL, Schroth, M. 1989. Observations on Megaselia persecutrix Schmitz (Diptera: Phoridae) and the significance of ommatidial size-differentiation. Entomologist’s Monthly Magazine, 125: 169–174.

    Google Scholar 

  • Disney, RHL, Weissflog, A, Maschwitz, U. 1998. A second species of legless scuttle fly (Diptera: Phoridae) associated with ants (Hymenoptera: Formicidae). Journal of Zoology, 246: 269–274.

    Article  Google Scholar 

  • Donisthorpe, HSJK. 1915. British ants: Their life-history and classification. Plymouth: William Brendon and Son.

    Book  Google Scholar 

  • Donisthorpe, HSJK. 1927. The guests of British ants. London: George Routledge and Sons.

    Google Scholar 

  • Donisthorphe, HSJK, Wilkinson, DS. 1930. Notes on the genus Paxylomma (Hym. Brac.), with the description of a new species taken in Britain. Transactions of the Royal Entomological Society of London, 78: 87–93.

    Article  Google Scholar 

  • Durán, J-MG, van Achterberg, C. 2011. Oviposition behaviour of four ant parasitoids (Hymenoptera, Braconidae, Euphorinae, Neoneurini and Ichneumonidae, Hybrizontinae), with the description of three new European species. ZooKeys, 125: 59–106.

    Article  Google Scholar 

  • Ebermann, E, Moser, JC. 2008. Mites (Acari: Scutacaridae) associated with the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), from Louisiana and Tennessee, USA. International Journal of Acarology, 34: 55–69.

    Article  Google Scholar 

  • Elizalde, L, Folgarait, PJ, Muscedere, M. 2012. Behavioral strategies of phorid parasitoids and responses of their hosts, the leaf-cutting ants. Journal of Insect Science, 12: 135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elzinga, RJ. 1978. Holdfast mechanisms in certain uropodine mites (Acarina: Uropodina). Annals of the Entomological Society of America, 71: 896–900.

    Article  Google Scholar 

  • Elzinga, RJ. 1993. Larvamimidae, a new family of mites (Acari, Dermanyssoidea) associated with army ants. Acarologia, 34: 95–103.

    Google Scholar 

  • Elzinga, RJ, Rettenmeyer, CW. 1974. Seven new species of Circocylliba (Acarina: Uropodina) found on army ants. Siete nuevas especies de Circocylliba (Acarina: Uropodina) encontrados en hormigas ronchadoras. Acarologia, 16: 595–611.

    Google Scholar 

  • Escherich, K. 1898b. Zur Biologie von Thorictus foreli Wasmann. Zoologischer Anzeiger, 21: 483–492.

    Google Scholar 

  • Evans, HC. 1982. Entomogenous fungi in tropical forest ecosystems: An appraisal. Ecological Entomology, 7: 47–60.

    Article  Google Scholar 

  • Evans, HC, Araújo, JPM, Halfeld, VR, Hughes, DP. 2018. Epitypification and re-description of the zombie-ant fungus, Ophiocordyceps unilateralis (Ophiocordycipitaceae). Fungal Systematics and Evolution, 1: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Evans, HC, Samson, RA. 1984. Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems, II: The Camponotus (Formicinae) complex. Transactions of the British Mycological Society, 82: 127–150.

    Article  Google Scholar 

  • Feener, DH Jr. 1981. Competition between ant species: Outcome controlled by parasitic flies. Science, 214: 815–817.

    Article  PubMed  Google Scholar 

  • Feener, DH Jr. 1987. Size-selective oviposition in Pseudacteon crawfordi (Diptera: Phoridae), a parasite of fire ants. Annals of the Entomological Society of America, 80: 148–151.

    Article  Google Scholar 

  • Feener, DH Jr. 2000. Is the assembly of ant communities mediated by parasitoids? Oikos, 90: 79–88.

    Article  Google Scholar 

  • Feener, DH Jr, Brown, BV. 1992. Reduced foraging of Solenopsis geminata (Hymenoptera: Formicidae) in the presence of parasitic Pseudacteon spp. (Diptera: Phoridae). Annals of the Entomological Society of America, 85: 80–84.

    Article  Google Scholar 

  • Feener, DH Jr, Brown, BV. 1993. Oviposition behavior of an ant-parasitizing fly, Neodohrniphora curvinervis (Diptera: Phoridae), and defense behavior by its leaf-cutting ant host Atta cephalotes (Hymenoptera: Formicidae). Journal of Insect Behavior, 6: 675–688.

    Article  Google Scholar 

  • Feener, DH Jr, Brown, BV. 1997. Diptera as parasitoids. Annual Review of Entomology, 42: 73–97.

    Article  CAS  PubMed  Google Scholar 

  • Feener, DH Jr, Moss, KAG. 1990. Defense against parasites by hitchhikers in leaf-cutting ants: A quantitative assessment. Behavioral Ecology and Sociobiology, 26: 17–29.

    Article  Google Scholar 

  • Feldhaar, H, Straka, J, Krischke, M, Berthold, K, Stoll, S, Mueller, MJ, Gross, R. 2007. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biology, 5: 1–11.

    Article  Google Scholar 

  • Fernández-Marín, H, Zimmerman, JK, Wcislo, WT. 2006. Acanthopria and Mimopriella parasitoid wasps (Diapriidae) attack Cyphomyrmex fungus-growing ants (Formicidae, Attini). Naturwissenschaften, 93: 17–21.

    Article  PubMed  Google Scholar 

  • Folgarait, PJ. 2013. Leaf-cutter ant parasitoids: Current knowledge. Psyche, 2013: 539780.

    Google Scholar 

  • Forel, A. 1894. Les formicides de la province d’Oran (Algerie). Bulletin de la Societe Vaudoise des Sciences naturelles, 30: 1–45.

    Google Scholar 

  • Fowler, HG. 1997. Morphological prediction of worker size discrimination and relative abundance of sympartic species of Pseudacteon (Dipt., Phoridae) parasitoids of the fire ant, Solenopsis saevissima (Hym., Formicidae) in Brazil. Journal of Applied Entomology, 121: 37–40.

    Article  Google Scholar 

  • Franks, NR, Healey, KJ, Byrom, L. 1991. Studies on the relationship between the ant ectoparasite Antennophorus grandis (Acarina: Antennophoridae) and its host Lasius flavus (Hymenoptera: Formicidae). Journal of Zoology, 225: 59–70.

    Article  Google Scholar 

  • Gil, R, Sabater-Muñoz, B, Latorre, A, Silva, FJ, Moya, A. 2002. Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proceedings of the National Academy of Sciences, 99: 4454–4458.

    Article  CAS  Google Scholar 

  • Gil, R, Silva, FJ, Zientz, E, Delmotte, F, González-Candelas, F, Latorre, A, Rausell, C, Kamerbeek, J, Gadau, J, Hölldobler, B, van Ham, RCHJ, Gross, R, Moya, A. 2003. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proceedings of the National Academy of Sciences, 100: 9388–9393.

    Article  CAS  Google Scholar 

  • Gilbert, LE, Morrison, LW. 1997. Patterns of host specificity in Pseudacteon parasitoid flies (Diptera: Phoridae) that attack Solenopsis fire ants (Hymenoptera: Formicidae). Environmental Entomology, 26: 1149–1154.

    Article  Google Scholar 

  • Girault, A. 1913. Some chalcidoid Hymenoptera from Northern Queensland. Archiv für Naturgeschichte, 79: 70–90.

    Google Scholar 

  • Godfray, HCJ. 1994. Parasitoids: Behavioral and evolutionary ecology. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Godfray, HCJ. 2007. Parasitoids. In Encyclopedia of biodiversity, ed. SA Levin. Cambridge, MA: Academic Press.

    Google Scholar 

  • Gösswald, K. 1950. Pflege des Ameisenparasiten Tamiclea globula Meig. (Dipt.) durch den Wirt mit Bemerkungen über den Stoffwechsel in der parasitierten Ameise. Verhandlungen der Deutschen Zoolologischen Gesellschaft 1949: 256–264.

    Google Scholar 

  • Gösswald, K. 1985. Organisation und Leben der Ameisen. Stuttgart: Wissenschaftliche Verlagsgesellschaft.

    Google Scholar 

  • Griffiths, HM, Hughes, WO. 2010. Hitchhiking and the removal of microbial contaminants by the leaf-cutting ant Atta colombica. Ecological Entomology, 35: 529–537.

    Google Scholar 

  • Haller, G. 1877. Antennophorus uhlmanni, ein neuer Gamaside. Archiv für Naturgeschichte, 46: 57–62.

    Google Scholar 

  • Heraty, JM. 1994. Biology and importance of two eucharitid parasites of Wasmannia and Solenopsis. In Exotic ants: Biology, impact and control of introduced species, ed. DF Williams, 104–120. Oxford: Westview Press.

    Google Scholar 

  • Heraty, JM. 2000. Phylogenetic relationships of Oraseminae (Hymenoptera: Eucharitidae). Annals of the Entomological Society of America, 93: 374–390.

    Article  Google Scholar 

  • Heraty, JM. 2002. Revision of the genera of Eucharitidae (Hymenoptera: Chalcidoidea) of the world. Memoirs of the American Entomological Institute, 68: 1–367.

    Google Scholar 

  • Heraty, JM, Barber, KN. 1990. Biology of Obeza floridana (Ashmead) and Pseudochalcura gibbosa (Provancher) (Hymenoptera: Eucharitidae). Proceedings of the Entomological Society of Washington, 92: 248–258.

    Google Scholar 

  • Heraty, JM, Hawks, D, Kostecki, JS, Carmichael, A. 2004. Phylogeny and behaviour of the Gollumiellinae, a new subfamily of the ant-parasitic Eucharitidae (Hymenoptera: Chalcidoidea). Systematic Entomology, 29: 544–559.

    Article  Google Scholar 

  • Heraty, JM, Murray, E. 2013. The life history of Pseudometagea schwarzii, with a discussion of the evolution of endoparasitism and koinobiosis in Eucharitidae and Perilampidae (Chalcidoidea). Journal of Hymenoptera Research, 35: 1–35.

    Article  Google Scholar 

  • Herreid, JS, Heraty, JM. 2017. Hitchhikers at the dinner table: A revisionary study of a group of ant parasitoids (Hymenoptera: Eucharitidae) specializing in the use of extrafloral nectaries for host access. Systematic Entomology, 42: 204–229.

    Article  Google Scholar 

  • Hiramatsu, M. 2003. A role for guanidino compounds in the brain. Molecular and Cellular Biochemistry, 244: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Hohorst, W, Graefe, G. 1961. Ameisen – obligatorische Zwischenwirte des Lanzettegels (Dicrocoelium dendriticum). Naturwissenschaften, 48: 229–230.

    Article  Google Scholar 

  • Hölldobler, B. 1966. Futterverteilung durch Männchen im Ameisenstaat. Zeitschrift für vergleichende Physiologie, 52: 430–455.

    Article  Google Scholar 

  • Hölldobler, B, Wilson, EO. 1990. The ants. Cambridge, MA: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • Hölldobler, B, Wilson, EO. 2011. The leafcutter ants: Civilization by instinct. New York: W. W. Norton & Company.

    Google Scholar 

  • Hölldobler, K. 1928. Zur Biologie der diebischen Zwergameise (Solenopsis fugax) und ihrer Gäste. Biologisches Zentralblatt, 48: 129–142.

    Google Scholar 

  • Hölldobler, K. 1947. Studien über die Ameisengrille (Myrmecophila acervorum Panzer) im mittleren Maingebiet. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 20: 607–648.

    Google Scholar 

  • Hölldobler, K. 1951. Über eine Milbenschädigung der Roßameise (Camponotus herculeanus), die durch eine Fehlreaktion des Wirtes wirksam wird. Zeitschrift für Angewandte Entomologie, 33: 104–107.

    Article  Google Scholar 

  • Hölldobler, K. 1953. Gibt es in Deutschland Ameisengäste, die echte Täuscher sind? Die Naturwissenschaften, 40: 34–35.

    Article  Google Scholar 

  • Hopping, KA, Chignell, SM, Lambin, EF. 2018. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proceedings of the National Academy of Sciences, 115: 11489–11494.

    Article  CAS  Google Scholar 

  • Hsieh, H-Y, Perfecto, I. 2012. Trait-mediated indirect effects of phorid flies on ants. Psyche, 2012: 380474.

    Google Scholar 

  • Hu, Y, Sanders, JG, Łukasik, P, D’Amelio, CL, Millar, JS, Vann, DR, Lan, Y, Newton, JA, Schotanus, M, Kronauer, DJ. 2018. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nature Communications, 9: 1–14.

    Google Scholar 

  • Huddleston, T. 1976. A revision of Elasmosoma Ruthe (Hymenoptera, Braconidae) with two new species from Mongolia. Annales Historico-Naturales Musei Nationalis Hungarici, 68: 215–225.

    Google Scholar 

  • Huggert, L, Masner, L. 1983. A review of myrmecophilic-symphilic diapriid wasps in the Holarctic realm, with descriptions of new taxa and a key to genera (Hymenoptera: Proctotrupoidea: Diapriidae). Contributions of the American Entomological Institute, 20: 63–89.

    Google Scholar 

  • Hughes, DP. 2013. Pathways to understanding the extended phenotype of parasites in their hosts. Journal of Experimental Biology, 216: 142–147.

    Article  PubMed  Google Scholar 

  • Hughes, DP, Andersen, SB, Hywel-Jones, NL, Himaman, W, Billen, J, Boomsma, JJ. 2011. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecology, 11: 1–10.

    Article  Google Scholar 

  • Hughes, DP, Araújo, JP, Loreto, RG, Quevillon, L, de Bekker, C, Evans, HC. 2016. From so simple a beginning: The evolution of behavioral manipulation by fungi. Advances in Genetics, 94: 437–469.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, DP, Evans, HC, Hywel-Jones, N, Boomsma, JJ, Armitage, SA. 2009. Novel fungal disease in complex leaf-cutting ant societies. Ecological Entomology, 34: 214–220.

    Article  Google Scholar 

  • Huhta, V. 2016. Catalogue of the Mesostigmata mites in Finland. Memoranda Societatis pro Fauna et Flora Fennica, 92: 129–148.

    Google Scholar 

  • Janet, C. 1897a. Études sur les fourmis les Guêpes et les Abeilles: Note 14. Rapports des animaux myrmécophiles avec les fourmis. Annals and Magazine of Natural History, 6: 620–623.

    Article  Google Scholar 

  • Janet, C. 1897b. Sur les rapports de l’Antennophorus uklniunni Haller avec le Lasius mixius Nyl. Comptes Rendus de l ’Académie des Science, Paris, 124: 583–585.

    Google Scholar 

  • Janzen, DH, Carroll, CRC. 1983. Paraponera clavata (bala, giant tropical ant). In Costa Rican natural history, ed. DH Janzen, 752–753. Chicago, IL: University of Chicago Press.

    Chapter  Google Scholar 

  • Jorgenson, C, Black, H, Hermann, H. 1984. Territorial disputes between colonies of the giant tropical ant Paraponera clavata (Hymenoptera: Formicidae: Ponerinae). Journal of the Georgia Entomological Society, 19: 156–158.

    Google Scholar 

  • Jouvenaz, DP, Lofgren, CS, Banks, WA. 1981. Biological control of imported fire ants: A review of current knowledge. Bulletin of the Entomological Society of America, 27: 203–209.

    Article  Google Scholar 

  • Jouvenaz, DP, Wojcik, DP, Naves, MA, Lofgren, CS. 1988. Observações sobre um nematóide parasito (Tetradonematidae) da formiga lava-pé, Solenopsis (Formicidae), em Mato Grosso. Pesquisa Agropecuária Brasileira, 23: 525–528.

    Google Scholar 

  • Kaiser, H. 1986. Über Wechselbeziehungen zwischen Nematoden (Mermithidae) und Ameisen. Zoologischer Anzeiger, 217: 156–177.

    Google Scholar 

  • Kaiser, H. 1991. Terrestrial and semiterrestrial Mermithidae. In Manual of agricultural nematology, ed. WR Nickle, 899–965. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Karawajew, W. 1906. Weitere Beobachtungen über Arten der Gattung Antennophorus. Mémoires de la Société des Naturalistes de Kiew, 20: 209–230.

    Google Scholar 

  • Kieffer, J. 1904. Nouveaux proctotrypides myrmécophiles. Bulletin de la Société d’Histoire Naturelle de Metz, 23: 31–58.

    Google Scholar 

  • Kistner, DH. 1979. Social and evolutionary significance of social insect symbionts. In Social insects, vol. 1, ed. HR Hermann, 340–413. New York: Academic Press.

    Google Scholar 

  • Kistner, DH. 1982. The social insects’ bestiary. In Social insects, vol. 3, ed. HR Hermann, 1–244. New York: Academic Press.

    Google Scholar 

  • Kolb, G. 1959. Untersuchungen über die Kernverhältnisse und morphologischen Eigenschaften symbiontischer Mikroorganismen bei verschiedenen Insekten. Zeitschrift für Morphologie und Ökologie der Tiere, 48: 1–71.

    Article  Google Scholar 

  • Kontschán, J, Szőcs, G, Kiss, B, Khaustov, AA. 2019. Bark beetle associated trematurid mites (Acari: Uropodina: Trematuridae) from Asian Russia with description of a new species. Systematic and Applied Acarology, 24: 1592–1603.

    Article  Google Scholar 

  • Krull, WH, Mapes, CR. 1952. Studies on the biology of Dicrocoelium dendriticum (Rudolphi, 1819), Looss, 1899 (Trematoda: Dicrocoeliidae), including its relation to the intermediate host, Cionella lubrica (Muiller), VII: The second intermediate host of Dicrocoelium dendriticum. Cornell Veterinarian, 42: 253–276.

    CAS  PubMed  Google Scholar 

  • Lachaud, J-P. 1980. Les communications tactiles interspécifique chez les diapriides myrmécophiles Lepidopria pedestris Kieffer et Solenopsia imitatrix Wasmann et leur hote Diplorhotrum fugax Latr. (Solenopsis fugax Latr.). Biologie-Écologie Méditerranéenne, 7: 183–184.

    Google Scholar 

  • Lachaud, J-P. 1981. Les glandes tégumentaires chez deux espéces de Diapriidae: Aspects structuraux et ultrastructuraux. Bulletin Intérieur de la Section Française de l’UIEIS, Toulouse, France: 83–85.

    Google Scholar 

  • Lachaud, J-P. 1982. Estudio sobre las relaciones trofalacticas entre Lepidopria pedestris Kieffer (Hymenoptera, Diapriidae) y su nuesped Diplorhoptrum fugax Latreille (Hymenoptera, Formicidae). Folia Entomológica Mexicana, 54: 46–47.

    Google Scholar 

  • Lachaud, J-P, Klompen, H, Pérez-Lachaud, G. 2016. Macrodinychus mites as parasitoids of invasive ants: An overlooked parasitic association. Scientific Reports, 6: 29995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachaud, J-P, Lenoir, A, Witte, V, eds. 2012. Ants and their parasites. London: Hindawi Press.

    Google Scholar 

  • Lachaud, J-P, Passera, L. 1982. Données sur la biologie de trois Diapriidae myrmécophiles: Plagiopria passerai Masner, Solenopsia imitatrix Wasmann et Lepidopria pedestris Kiefer. Insectes Sociaux, 29: 561–568.

    Article  Google Scholar 

  • Lachaud, J-P, Pérez-Lachaud, G. 2009. Impact of natural parasitism by two eucharitid wasps on a potential biocontrol agent ant in southeastern Mexico. Biological Control, 48: 92–99.

    Article  Google Scholar 

  • Lachaud, J-P, Pérez-Lachaud, G. 2012. Diversity of species and behavior of hymenopteran parasitoids of ants: A review. Psyche: 134746.

    Google Scholar 

  • Lanan, MC, Rodrigues, PAP, Agellon, A, Jansma, P, Wheeler, DE. 2016. A bacterial filter protects and structures the gut microbiome of an insect. ISME Journal, 10: 1866–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, D, Calixto, ES, Del-Claro, K. 2017. Variation in extrafloral nectary productivity influences the ant foraging. PLOS One, 12: e0169492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Breton, J, Takaku, G, Tsuji, K. 2006. Brood parasitism by mites (Uropodidae) in an invasive population of the pest-ant Pheidole megacephala. Insectes Sociaux, 53: 168–171.

    Article  Google Scholar 

  • Lehtinen, PT. 1987. Association of uropodid, prodinychid, polyaspidid, antennophorid, sejid, microgynid, and zerconid mites with ants. Entomologisk tidskrift, 108: 13–20.

    Google Scholar 

  • Linksvayer, TA, McCall, AC, Jensen, RM, Marshall, CM, Miner, JW, McKone, MJ. 2002. The function of hitchhiking behavior in the leaf-cutting ant Atta cephalotes. Biotropica, 34: 93–100.

    Article  Google Scholar 

  • Loiácono, M. 1985. A new diapriid (Hymenoptera) parasitoid of larvae of Acromyrmex ambiguus (Emery) (Hymenoptera, Formicidae) from Uruguay. Revista de la Sociedad Entomológica Argentina, 44: 129–136.

    Google Scholar 

  • Loiácono, M, Margaria, C, Moreira, DD, Aquino, D. 2013. A new species of Szelenyiopria Fabritius (Hymenoptera: Diapriidae), larval parasitoid of Acromyrmex subterraneus subterraneus (Forel) (Hymenoptera: Formicidae) from Brazil. Zootaxa, 3646: 228–234.

    Article  PubMed  Google Scholar 

  • Loiácono, MS, Margaría, CB, Quirán, E, Molas, BC. 2002. Revision of the myrmecophilous diapriid genus Bruchopria Kiefer (Hymenoptera, Proctotrupoidea, Diapriidae). Revista Brasileira de Entomologia, 46: 231–235.

    Article  Google Scholar 

  • Marsh, P. 1979. Hybrizontidae. In Catalog of Hymenoptera in Ameri ca North of Mexico, ed. KV Krombein, PD Hurd, DR Smoth, BD Burks, 144–313. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Marsh, P. 1989. Notes on the genus Hybrizon in North America (Hymenoptera: Paxylommatidae). Proceedings of the Entomological Society of Washington, 91: 29–34.

    Google Scholar 

  • Martins, C, Moreau, CS. 2020. Influence of host phylogeny, geographical location and seed harvesting diet on the bacterial community of globally distributed Pheidole ants. PeerJ, 8: e8492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruyama, M, Akino, T, Hashim, R, Komatsu, T. 2009. Behavior and cuticular hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with Asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology, 54: 19–35.

    Google Scholar 

  • Maruyama, M, Disney, RHL, Hashim, R. 2008. Three new species of legless, wingless scuttle flies (Diptera: Phoridae) associated with army ants (Hymenoptera: Formicidae) in Malaysia. Sociobiology, 52: 485–496.

    Google Scholar 

  • Maschwitz, U, Weissflog, A, Seebauer, S, Disney, RHL, Witt, V. 2008. Studies on European ant decapitating flies (Diptera: Phoridae), I: Releasers and phenology of parasitism of Pseudacteon formicarum. Sociobiology, 51: 127–140.

    Google Scholar 

  • Masner, L. 1959. A revision of ecitophilous diapriid-genus Mimopria Holmgren (Hym., Proctotrupoidea). Insectes Sociaux, 6: 361–367.

    Article  Google Scholar 

  • Masner, L. 1993. Superfamily Proctotrupoidea. In Hymenoptera of the world: An identification guide to families, ed. H Goulet, J Huber, 537–557. Ottawa, Canada: Agriculture Canada Publications.

    Google Scholar 

  • Masner, L, García, R., Luis, J. 2002. The genera of Diapriinae (Hymenoptera: Diapriidae) in the New World. Bulletin of the American Museum of Natural History, 268: 1–138.

    Article  Google Scholar 

  • Masters, WM, Tautz, J, Fletcher, NH, Markl, H. 1983. Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. Journal of Comparative Physiology, 150: 239–249.

    Article  Google Scholar 

  • Mathis, KA, Philpott, SM, Moreira, RF. 2011. Parasite lost: chemical and visual cues used by Pseudacteon in search of Azteca instabilis. Journal of Insect Behavior, 24: 186–199.

    Article  PubMed  Google Scholar 

  • Mathis, KA, Tsutsui, ND. 2016. Cuticular hydrocarbon cues are used for host acceptance by Pseudacteon spp. phorid flies that attack Azteca sericeasur ants. Journal of chemical ecology, 42: 286–293.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, DA, Tschinkel, WR. 1996. Mermithid nematode parasitism of Solenopsis ants (Hymenoptera: Formicidae) of Northern Florida. Annals of the Entomological Society of America, 89: 231–237.

    Article  Google Scholar 

  • Moreau, CS. 2020. Symbioses among ants and microbes. Current Opinion in Insect Science, 39: 1–5.

    Article  PubMed  Google Scholar 

  • Morrison, LW. 2000. Biology of Pseudacteon (Diptera: Phoridae) ant parasitoids and their potential to control imported Solenopsis fire ants (Hymenoptera: Formi-cidae). Recent Research Developments in Entomology, 3: 1–13.

    Google Scholar 

  • Morrison, LW, Dall’Aglio-Holvorcem, CG, Gilbert, LE. 1997. Oviposition behavior and development of Pseudacteon flies (Diptera: Phoridae), parasitoids of Solenopsis fire ants (Hymenoptera: Formicidae). Environmental Entomology, 26: 716–724.

    Article  Google Scholar 

  • Morrison, LW, King, JR. 2004. Host location behavior in a parasitoid of imported fire ants. Journal of Insect Behavior, 17: 367–383.

    Article  Google Scholar 

  • Morrison, LW, Porter, SD. 2006. Post-release host-specificity testing of Pseudacteon tricuspis, a phorid parasitoid of Solenopsis invicta fire ants. BioControl, 51: 195–205.

    Article  Google Scholar 

  • Murray, EA, Carmichael, AE, Heraty, JM. 2013. Ancient host shifts followed by host conservatism in a group of ant parasitoids. Proceedings of the Royal Society B: Biological Sciences, 280: 20130495.

    Article  PubMed Central  Google Scholar 

  • Naumann, I. 1986. A revision of the Indo-Australian Smicromorphinae (Hymenoptera: Chalcididae). Memoirs of the Queensland Museum, 22: 169–187.

    Google Scholar 

  • Noda, T, Meguri, T, Iimure, K, Ono, M, Araki, T. 2011. Potential of D-erythro-C14-sphingosine as an adjuvant for a fungal pesticide of Nomuraea rileyi. Bioscience, Biotechnology, and Biochemistry, 75: 373–375.

    Article  CAS  PubMed  Google Scholar 

  • Notton, DG. 1994. New eastern Palaearctic myrmecophile Lepidopria and Tetramopria (Hymenoptera, Proctotrupoidea, Diapriidae, Diapriini). Insecta Koreana, 11: 64–74.

    Google Scholar 

  • Orr, M, Seike, S, Benson, W, Gilbert, L. 1995. Flies suppress fire ants. Nature, 373: 292–293.

    Article  CAS  Google Scholar 

  • Peeters, C, Heraty, J, Wiwatwitaya, D. 2015. Eucharitid wasp parasitoids in cocoons of the ponerine ant Diacamma scalpratum from Thailand. Halteres, 6: 90–94.

    Google Scholar 

  • Pérez-Lachaud, G, Heraty, JM, Carmichael, A, Lachaud, J-P. 2006. Biology and behavior of Kapala (Hymenoptera: Eucharitidae) attacking Ectatomma, Gnamptogenys, and Pachycondyla (Formicidae: Ectatomminae and Ponerinae) in Chiapas, Mexico. Annals of the Entomological Society of America, 99: 567–576.

    Article  Google Scholar 

  • Pérez-Lachaud, G, Klompen, H, Poteaux, C, Santamaría, C, Armbrecht, I, Beugnon, G, Lachaud, J-P. 2019. Context dependent life-history shift in Macrodinychus sellnicki mites attacking a native ant host in Colombia. Scientific Reports, 9: 8394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Ortega, B, Fernández-Marín, H, Loiácono, M, Galgani, P, Wcislo, W. 2010. Biological notes on a fungus-growing ant, Trachymyrmex cf. zeteki (Hymenoptera, Formicidae, Attini) attacked by a diverse community of parasitoid wasps (Hymenoptera, Diapriidae). Insectes Sociaux, 57: 317–322.

    Article  Google Scholar 

  • Perlman, DL. 1993. Colony founding among Ants. PhD dissertation, Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA.

    Google Scholar 

  • Plowes, RM, Folgarait, PJ, Gilbert, LE. 2012. The introduction of the fire ant parasitoid Pseudacteon nocens in North America: Challenges when establishing small populations. BioControl, 57: 503–514.

    Article  Google Scholar 

  • Plowes, RM, Lebrun, EG, Brown, BV, Gilbert, LE. 2009. A review of Pseudacteon (Diptera: Phoridae) that parasitize ants of the Solenopsis geminata complex (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 102: 937–958.

    Article  Google Scholar 

  • Poinar, G. 2012. Nematode parasites and associates of ants: Past and present. Psyche: 192017.

    Google Scholar 

  • Poinar, G, Yanoviak, SP. 2008. Myrmeconema neotropicum ng, n. sp., a new tetradonematid nematode parasitising South American populations of Cephalotes atratus (Hymenoptera: Formicidae), with the discovery of an apparent parasite-induced host morph. Systematic Parasitology, 69: 145–153.

    Article  PubMed  Google Scholar 

  • Pontoppidan, M-B, Himaman, W, Hywel-Jones, NL, Boomsma, JJ, Hughes, DP. 2009. Graveyards on the move: The spatio-temporal distribution of dead Ophiocordyceps-infected ants. PLOS One, 4: e4835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter, SD. 1998a. Biology and behavior of Pseudacteon decapitating flies (Diptera: Phoridae) that parasitize Solenopsis fire ants (Hymenoptera: Formicidae). Florida Entomologist, 81: 292–309.

    Article  Google Scholar 

  • Porter, SD. 1998b. Host-specific attraction of Pseudacteon flies (Diptera: Phoridae) to fire ant colonies in Brazil. Florida Entomologist, 81: 423–429.

    Article  Google Scholar 

  • Porter, SD, Alonso, LE. 1999. Host specificity of fire ant decapitating flies (Diptera: Phoridae) in laboratory oviposition tests. Journal of Economic Entomology, 92: 110–114.

    Article  Google Scholar 

  • Porter, SD, Gilbert, LE. 2004. Assessing host specificity and field release potential of fire ant decapitating flies (Phoridae: Pseudacteon). In Assessing host ranges for parasitoids and predators used for classical biological control: A guide to best practice, ed. RG Van Driesche, T Murray, R Reardon, 152–176. Morgantown, WV: USDA Forest Service.

    Google Scholar 

  • Porter, SD, Kumar, V, Calcaterra, LA, Briano, JA, Seal, DR. 2013. Release and establishment of the little decapitating fly Pseudacteon cultellatus (Diptera: Phoridae) on imported fire ants (Hymenoptera: Formicidae) in Florida. Florida Entomologist, 96: 1567–1573.

    Article  Google Scholar 

  • Pringle, EG, Moreau, CS. 2017. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis. Proceedings of the Royal Society B: Biological Sciences, 284: 20162770.

    Article  PubMed Central  Google Scholar 

  • Rafiqi, AM, Rajakumar, A, Abouheif, E. 2020. Origin and elaboration of a major evolutionary transition in individuality. Nature, 585: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Ramalho, MO, Bueno, OC, Moreau, CS. 2017a. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evolutionary Biology, 17: 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramalho, MO, Bueno, OC, Moreau, CS. 2017b. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLOS One, 12: e0187461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramalho, MO, Moreau, CS, Bueno, OC. 2019. The potential role of environment in structuring the microbiota of Camponotus across parts of the body. Advances in Entomology, 7: 47–70.

    Article  Google Scholar 

  • Raspotnig, G, Stabentheiner, E, Föttinger, P, Schaider, M, Krisper, G, Rechberger, G, Leis, H. 2009. Opisthonotal glands in the Camisiidae (Acari, Oribatida): Evidence for a regressive evolutionary trend. Journal of Zoological Systematics and Evolutionary Research, 47: 77–87.

    Article  Google Scholar 

  • Reichensperger, A. 1924. Neue südamerikanische Histeriden als Gäste von Wanderameisen und Termiten, II: Teil. Revue Suisse de Zoologie, 31: 117–152.

    Google Scholar 

  • Rettenmeyer, CW. 1961. Arthropods associated with neotropical army ants with a review of the behavior of these ants. PhD dissertation, University of Kansas, Lawrence.

    Google Scholar 

  • Rettenmeyer, CW. 1962a. Notes on host specificity and behavior of myrmecophilous macrochelid mites. Journal of the Kansas Entomological Society, 35: 358–360.

    Google Scholar 

  • Rettenmeyer, CW. 1962b. The diversity of arthropods found with Neotropical army ants and observations on the behavior of representative species. Proceedings of the North Central Branch of the Entomological Society of America, 17: 14–15.

    Google Scholar 

  • Rettenmeyer, CW, Akre, RD. 1968. Ectosynibiosis between phorid flies and army ants. Annals of the Entomological Society of America, 61: 1317–1326.

    Article  Google Scholar 

  • Rettenmeyer, CW, Rettenmeyer, ME, Joseph, J, Berghof, SM. 2011. The largest animal association centered on one species: The army ant Eciton burchellii and its more than 300 associates. Insectes Sociaux, 58: 281–292.

    Article  Google Scholar 

  • Ronque, MU, Lyra, ML, Migliorini, GH, Bacci, M, Oliveira, PS. 2020. Symbiotic bacterial communities in rainforest fungus-farming ants: Evidence for species and colony specificity. Scientific Reports, 10: 10172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, JA, Moreau, CS, Goldman-Huertas, B, Fujiwara, M, Lohman, DJ, Pierce, NE. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences, 106: 21236–21241.

    Article  CAS  Google Scholar 

  • Russell, JA, Sanders, JG, Moreau, CS. 2017. Hotspots for symbiosis: Function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecological News, 24: 43–69.

    Google Scholar 

  • Sakata, T, Norton, RA. 2001. Opisthonotal gland chemistry of early-derivative oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. International Journal of Acarology, 27: 281–292.

    Article  Google Scholar 

  • Sameshima, S, Hasegawa, E, Kitade, O, Minaka, N, Matsumoto, T. 1999. Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zoological Science, 16: 993–1000.

    Article  CAS  Google Scholar 

  • Sauer, C, Stackebrandt, E, Gadau, J, Hölldobler, B, Gross, R. 2000. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: Proposal of the new taxon Candidatus Blochmannia gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50: 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, I, Modlmeier, AP, Beros, S, Foitzik, S. 2012. Antsocieties buffer individual-level effects of parasite infections. American Naturalist, 180: 671–683.

    Article  PubMed  Google Scholar 

  • Schmid-Hempel, P. 1998. Parasites in social insects. Princeton, NJ: Prince ton University Press.

    Google Scholar 

  • Schneider, G, Hohorst, W. 1971. Wanderung der Metacercarien des Lanzett-Egels in Ameisen. Naturwissenschaften, 58: 327–328.

    Article  CAS  PubMed  Google Scholar 

  • Schröder, D, Deppisch, H, Obermayer, M, Krohne, G, Stackebrandt, E, Hölldobler, B, Goebel, W, Gross, R. 1996. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): Systematics, evolution and ultrastructural characterization. Molecular Microbiology, 21: 479–489.

    Article  PubMed  Google Scholar 

  • Schwitzke, C, Fiala, B, Linsenmair, KE, Curio, E. 2015. Eucharitid ant-parasitoid affects facultative ant-plant Leea manillensis: Top-down effects through three trophic levels. Arthropod-Plant Interactions, 9: 497–505.

    Article  Google Scholar 

  • Sharkey, MJ, Carpenter, JM, Vilhelmsen, L, Heraty, J, Liljeblad, J, Dowling, AP, Schulmeister, S, Murray, D, Deans, AR, Ronquist, F. 2012. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28: 80–112.

    Article  PubMed  Google Scholar 

  • Shaw, SR. 1993. Observations on the ovipositional behavior of Neoneurus mantis, an ant-associated parasitoid from Wyoming (Hymenoptera: Braconidae). Journal of Insect Behavior, 6: 649–658.

    Article  Google Scholar 

  • Shenefelt, RD. 1969. Braconidae 1. Hymenopterorum Catalogus (Nova Editio), 4: 1–176.

    Google Scholar 

  • Silva, VM, Moreira, GF, Lopes, JM, Delabie, JH, Oliveira, AR. 2018. A new species of Cosmolaelaps Berlese (Acari: Laelapidae) living in the nest of the ant Neoponera inversa (Smith) (Hymenoptera: Formicidae) in Brazil. Systematic and Applied Acarology, 23: 13–24.

    Article  Google Scholar 

  • Sinotte, VM, Freedman, SN, Ugelvig, LV, Seid, MA. 2018. Camponotus floridanus ants incur a trade-off between phenotypic development and pathogen susceptibility from their mutualistic endosymbiont Blochmannia. Insects, 9: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll, S, Feldhaar, H, Fraunholz, MJ, Gross, R. 2010. Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiology, 10: 1–16.

    Article  Google Scholar 

  • Stradling, D. 1978. The influence of size on foraging in the ant, Atta cephalotes, and the effect of some plant defence mechanisms. Journal of Animal Ecology, 47: 173–188.

    Article  Google Scholar 

  • Tishechkin, AK, Kronauer, DJ, Von Beeren, C. 2017. Taxonomic review and natural history notes of the army ant-associated beetle genus Ecclisister Reichensperger (Coleoptera: Histeridae: Haeteriinae). Coleopterists Bulletin, 71: 279–288.

    Article  Google Scholar 

  • Trabalon, M, Plateaux, L, Peru, L, Bagnères, A-G, Hart-mann, N. 2000. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. Journal of Insect Physiology, 46: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Trach, VA, Bobylev, AN. 2018. Description of the female of the myrmecophilous mite Antennophorus goesswaldi Wiśniewski et Hirschmann, 1992 (Acari: Mesostigmata: Antennophoridae). Acarina, 26: 227–235.

    Article  Google Scholar 

  • Uppstrom, KA, Klompen, H. 2011. Mites (Acari) associated with the desert seed harvester ant, Messor pergandei (Mayr). Psyche: 974646.

    Google Scholar 

  • van Achterberg, C. 1999. The West Palaearctic species of the subfamily Paxylommatinae (Hymenoptera: Ichneumonidae), with special reference to the genus Hybrizon Fallén. Zoologische Mededelingen Leiden, 73: 11–26.

    Google Scholar 

  • van Achterberg, C, Argaman, Q. 1993. Kollasmosoma gen. nov. and a key to the genera of the subfamily Neoneurinae (Hymenoptera: Braconidae). Zoologische Mededelingen Leiden, 67: 63–74.

    Google Scholar 

  • Vander Meer, RK, Jouvenaz, DP, Wojcik, DP. 1989. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). Journal of Chemical Ecology, 15: 2247–2261.

    Article  CAS  PubMed  Google Scholar 

  • Van Pelt, AF. 1958. The occurrence of a Cordyceps on the ant Camponotus pennsylvanicus (De Geer) in the Highlands, NC region. Journal of the Tennessee Academy of Sciences, 33: 120–122.

    Google Scholar 

  • Varone, L, Briano, J. 2009. Bionomics of Orasema simplex (Hymenoptera: Eucharitidae), a parasitoid of Solenopsis fire ants (Hymenoptera: Formicidae) in Argentina. Biological Control, 48: 204–209.

    Article  Google Scholar 

  • Vieira-Neto, E, Mundim, F, Vasconcelos, H. 2006. Hitchhiking behaviour in leaf-cutter ants: An experimental evaluation of three hypotheses. Insectes Sociaux, 53: 326–332.

    Article  Google Scholar 

  • Walter, DE, Moser, JC. 2010. Gaeolaelaps invictianus, a new and unusual species of Hypoaspidine mite (Acari: Mesostigmata: Laelapidae) phoretic on the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) in Louisiana, USA. International Journal of Acarology, 36: 399–407.

    Article  Google Scholar 

  • Wang, X-L, Yao, Y-J. 2011. Host insect species of Ophiocordyceps sinensis: A review. ZooKeys, 127: 43.

    Article  Google Scholar 

  • Wang, Z, Zhuang, H, Wang, M, Pierce, NE. 2019. Thitarodes shambalaensis sp. nov. (Lepidoptera, Hepialidae): A new host of the caterpillar fungus Ophiocordyceps sinensis supported by genome-wide SNP data. ZooKeys, 885: 89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward, PS, Blaimer, BB, Fisher, BL. 2016. A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa, 4072: 343–357.

    Article  PubMed  Google Scholar 

  • Wasmann, E. 1891. Die zusammengesetzten Nester und gemischten Kolonien der Ameisen: ein Beitrag zur Biologie, Psychologie und Entwicklungsgeschichte der Ameisengesellschaften. Münster in Westphalen: Verlag der Aschendorffsche Buchdruckerei.

    Google Scholar 

  • Wasmann, E. 1898a. Lebensweise von Thorictus foreli. Mit einem anatomischen Anhang und einer Tafel. Natur und Offenbarung, 8: 466–478.

    Google Scholar 

  • Wasmann, E. 1898b. Thorictus foreli als Ectoparasit der Ameisenfühler. Zoologischer Anzeiger, 21: 536–546.

    Google Scholar 

  • Wasmann, E. 1899. Die psychischen Fähigkeiten der Ameisen. Zoologica, 11: 1–133.

    Google Scholar 

  • Wasmann, E. 1902. Zur Kenntnis der myrmecophilen Antennophorus und anderer auf Ameisen und Termiten reitender Acarinen. Zoologischer Anzeiger, 25: 66–76.

    Google Scholar 

  • Wasmann, E. 1918. Zur Lebensweise und Fortpflanzung von Pseudacteon formicarum Verr. (Diptera, Phoridae). Biologisches Zentralblatt, 38: 317–329.

    Google Scholar 

  • Wasmann, E. 1925. Die Ameisenmimikry. Berlin: Verlag Gebrüder Borntraeger.

    Google Scholar 

  • Watanabe, C. 1984. Notes on Paxylommatinae with review of Japanese species (Hymenoptera, Braconidae). Kontyū, 52: 553–556.

    Google Scholar 

  • Weissflog, A, Maschwitz, U, Disney, RHL, Rościszewski, K. 1995. A fly’s ultimate con. Nature, 378: 137.

    Article  CAS  Google Scholar 

  • Weissflog, A, Maschwitz, U, Seebauer, S, Disney, RHL, Seifert, B, Witte, V. 2008. Studies on European ant decapitating flies (Diptera: Phoridae), II: Observations that contradict the reported catholicity of host choice Pseudaction formicarum. Sociobiology, 51: 87.

    Google Scholar 

  • Wernegreen, JJ, Degnan, PH, Lazarus, AB, Palacios, C, Bordenstein, SR. 2003. Genome evolution in an insect cell: Distinct features of an ant-bacterial partnership. Biological Bulletin, 204: 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Wernegreen, JJ, Kauppinen, SN, Brady, SG, Ward, PS. 2009. One nutritional symbiosis begat another: Phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evolutionary Biology, 9: 292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler, WM. 1907. The polymorphism of ants, with an account of some singular abnormalities due to parasitism. Bulletin of the American Museum of Natural History, 23: 1–93.

    Google Scholar 

  • Wheeler, WM. 1910. Ants: Their structure, development and behavior. New York: Columbia University Press.

    Google Scholar 

  • Williams, R, Whitcomb, W. 1974. Parasites of fire ants in South America. Proceedings of Tall Timbers Conference on Ecological Animal Control by Habitat Management, 5: 49–59.

    Google Scholar 

  • Wilson, EO. 1971. The insect societies. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Wilson, EO. 1976. The organization of colony defense in the ant Pheidole dentata Mayr (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 1: 63–81.

    Article  Google Scholar 

  • Wing, M. 1951. A new genus and species of myrmecophilous Diapriidae with taxonomic and biological notes on related forms. Transactions of the Royal Entomological Society of London, 102: 195–210.

    Article  Google Scholar 

  • Wirth, S, Moser, JC. 2008. Interactions of histiostomatid mites (Astigmata) and leafcutting ants. In Integrative Acarology: Proceedings of the 6th European Congress, ed. M Bertrand, S Kreiter, K McCoy, A Migeon, 378–384. Monpellier, France: European Association of Acarologists.

    Google Scholar 

  • Wirth, S, Moser, JC. 2010. Histiostoma blomquisti n. sp. (Acari: Histiostomatidae): A phoretic mite of the red imported ant, Solenopsis Invicta Buren (Hymenoptera: Formicidae). Acarologia, 50: 357–371.

    Article  Google Scholar 

  • Wirth, W, Robinson, W, Kempf, W. 1978. The Rev. Thomas Borgmeier, O. f. m. 1892–1975. Proceedings-Entomological Society of Washington (USA), 80: 141–144.

    Google Scholar 

  • Wisniewski, J, Hirschmann, W. 1992. Gangsystematische Studie von 3 neuen Antennophorus-Arten aus Polen (Mesostigmata, Antennophorina). Acarologia, 33: 233–244.

    Google Scholar 

  • Wolschin, F, Hölldobler, B, Gross, R, Zientz, E. 2004. Replication of the endosymbiotic bacterium Blochmannia floridanus is correlated with the developmental and reproductive stages of its ant host. Applied and Environmental Microbiology, 70: 4096–4102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Y, Li, Y, Wang, W-J, He, J-S, Yang, R-H, Wu, H-J, Wang, X-L, Jiao, L, Tang, Z, Yao, Y-J. 2017. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 206: 143–150.

    Article  Google Scholar 

  • Yanoviak, SP, Kaspari, M, Dudley, R, Poinar, G Jr. 2008. Parasite-induced fruit mimicry in a tropical canopy ant. American Naturalist, 171: 536–544.

    Article  CAS  PubMed  Google Scholar 

  • Yoder, JA, Domingus, JL. 2003. Identification of hydrocarbons that protect ticks (Acari: Ixodidae) against fire ants (Hymenoptera: Formicidae), but not lizards (Squamata: Polychrotidae), in an allomonal defense secretion. International Journal of Acarology, 29: 87–91.

    Article  Google Scholar 

  • Yu, DS, Hortsmann, K. 1997. A catalogue of world Ichneumonidae (Hymenoptera). Memoirs of the American Entomological Institute, 58: 1558.

    Google Scholar 

  • Yu, DS, van Achterberg, K, Horstmann, K. 2007. Biological and taxonomic information of world Ichneumonoidea, 2006. Electronic Compact Disk. Taxapad, Vancouver, Canada. http://www.taxapad.com.

  • Yu, DW, Davidson, DW. 1997. Experimental studies of species-specificity in Cecropia-ant relationships. Ecological Monographs, 67: 273–294.

    Google Scholar 

  • Yu, DW, Pierce, NE. 1998. A castration parasite of an ant-plant mutualism. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265: 375–382.

    Google Scholar 

  • Yu, DW, Quicke, D. 1997. Compsobraconoides (Braconidae: Braconinae), the first hymenopteran ectoparasitoid of adult Azteca ants (Hymenoptera: Formicidae). Journal of Hymenoptera Research, 6: 419–421.

    Google Scholar 

  • Yu, DW, Wilson, HB, Pierce, NE. 2001. An empirical model of species coexistence in a spatially structured environment. Ecology, 82: 1761–1771.

    Article  Google Scholar 

  • Zientz, E, Beyaert, I, Gross, R, Feldhaar, H. 2006. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Applied and Environmental Microbiology, 72: 6027–6033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hölldobler, B., Kwapich, C. (2023). In und auf den Körpern der Ameisen. In: Die Gäste der Ameisen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66526-8_2

Download citation

Publish with us

Policies and ethics