Skip to main content

Correlation Functions and the Spectrum of the Initial Fluctuations

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 855 Accesses

Abstract

The comparison of the observed distribution of galaxies in space with the expectations of different models of the origin of large scale structures is best carried out using correlation functions. We introduce two-point correlation functions for galaxies and show how they are related to the power spectrum of their distribution in space. Estimates of the initial power spectrum, and specifically the Harrison-Zeldovich power spectrum, are introduced. Various physical processes modify the initial power spectrum and these are described by transfer functions. These concepts are applied to a number models of structure formation, including the Adiabatic Hot and Cold Dark Matter models and Isocurvature Cold Dark Matter models. The evolution of these models are followed to the present epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I have given a simple treatment of dynamical friction in astronomical systems as the gravitational analogue of the process of ionisation losses in the interactions of charged particles (Longair, 2011).

References

  • Anderson, L., Aubourg, É., Bailey, S., et al. (2014). The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Monthly Notices of the Royal Astronomical Society, 441(1), 24–62. https://doi.org/10.1093/mnras/stu523

    Article  ADS  Google Scholar 

  • Bahcall, N. (1997). Dark matter. In N. Turok (Ed.), Critical dialogues in cosmology (pp. 221–232). World Scientific.

    Google Scholar 

  • Bahcall, N. A. (1988). Large-scale structure in the Universe indicated by galaxy clusters. Annual Review of Astronomy and Astrophysics, 26, 631–686.

    Article  ADS  Google Scholar 

  • Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. (1986). The statistics of peaks in Gaussian random fields. The Astrophysical Journal, 304, 15–61.

    Article  ADS  Google Scholar 

  • Baumann, D. (2022). Cosmology. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Benson, A. J., Frenk, C. S., Baugh, C. M., et al. (2001). The clustering evolution of the galaxy distribution. Monthly Notices of the Royal Astronomical Society, 327, 1041–1056.

    Article  ADS  Google Scholar 

  • Bond, J. R., & Efstathiou, G. (1991). The formation of cosmic structure with a 17 keV neutrino. Physics Letters B, 265, 245–250.

    Article  ADS  Google Scholar 

  • Bond, J. R., & Szalay, A. S. (1983). The collisionless damping of density fluctuations in the expanding Universe. The Astrophysical Journal, 274, 443–468.

    Article  ADS  Google Scholar 

  • Cole, S., Percival, W. J., Peacock, J. A., et al. (2005). The 2dF galaxy redshift survey: Power-spectrum analysis of the final data set and cosmological implications. Monthly Notices of the Royal Astronomical Society, 362, 505–534.

    Article  ADS  Google Scholar 

  • Coles, P., & Lucchin, F. (2002). Cosmology: The origin and evolution of cosmic structure (2nd ed.). John Wiley & Sons.

    MATH  Google Scholar 

  • Croom, S. M., Boyle, B. J., & Shanks, T. (2005). The 2dF QSO redshift survey. XIV: Structure and evolution from the two-point correlation function. Monthly Notices of the Royal Astronomical Society, 356, 415–438.

    Article  ADS  Google Scholar 

  • Davis, M., Efstathiou, G., Frenk, C., & White, S. D. M. (1985). The evolution of large-scale structure in a Universe dominated by Cold Dark Matter. The Astrophysical Journal, 292, 371–394.

    Article  ADS  Google Scholar 

  • Dekel, A. (1986). Biased galaxy formation. Comments on Modern Physics, Part C Comments on Astrophysics, 11, 235–256.

    ADS  Google Scholar 

  • Dekel, A., & Rees, M. J. (1987). Physical mechanisms for biased galaxy formation. Nature, 326, 455–462.

    Article  ADS  Google Scholar 

  • Dodelson, S., Gates, E. I., & Turner, M. S. (1996). Cold Dark Matter. Science, 274, 69–75.

    Article  ADS  Google Scholar 

  • Efstathiou, G. (1990). Cosmological perturbations. In J. A. Peacock, A. F. Heavens, & A. T. Davies (Eds.), Physics of the early Universe (pp. 361–463). SUSSP Publications.

    Google Scholar 

  • Efstathiou, G., & Bond, J. R. (1986). Isocurvature Cold Dark Matter fluctuations. Monthly Notices of the Royal Astronomical Society, 218, 103–121.

    Article  ADS  Google Scholar 

  • Efstathiou, G., Frenk, C. S., White, S. D. M., & Davis, M. (1988). Gravitational clustering from scale-free initial conditions. Monthly Notices of the Royal Astronomical Society, 235, 715–748.

    Article  ADS  Google Scholar 

  • Eisenstein, D. J., & Hu, W. (1998). Baryonic features in the matter transfer function. The Astrophysical Journal, 496, 605–614.

    Article  ADS  Google Scholar 

  • Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. (2005). Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. The Astrophysical Journal, 633, 560–574.

    Article  ADS  Google Scholar 

  • Frenk, C. (1986). Galaxy clustering and the dark-matter problem. Philosophical Transactions of the Royal Society of London A, 320, 517–541.

    Article  ADS  Google Scholar 

  • Hamilton, A. J. S., Kumar, P., Lu, E., & Matthews, A. (1991). Reconstructing the primordial spectrum of fluctuations of the Universe from the observed nonlinear clustering of galaxies. The Astrophysical Journal, 374, L1–L4.

    Article  ADS  Google Scholar 

  • Harrison, E. (1970). Fluctuations at the threshold of classical cosmology. Physical Review D, 1, 2726–2730.

    Article  ADS  Google Scholar 

  • Hogg, D. W., Eisenstein, D. J., Blanton, M. R., et al. (2005). Cosmic homogeneity demonstrated with luminous red galaxies. The Astrophysical Journal, 624, 54–58.

    Article  ADS  Google Scholar 

  • Hu, W., Sugiyama, N., & Silk, J. (1997). The physics of Microwave Background anisotropies. Nature, 386, 37–43.

    Article  ADS  Google Scholar 

  • Kaiser, N. (1984). On the spatial correlations of Abell clusters. The Astrophysical Journal, 284, L9–L12.

    Article  ADS  Google Scholar 

  • Kaiser, N. (1987). Clustering in real space and in redshift space. Monthly Notices of the Royal Astronomical Society, 227, 1–21.

    Article  ADS  Google Scholar 

  • Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. (1999). Clustering of galaxies in a hierarchical Universe. I: Methods and results at z = 0. Monthly Notices of the Royal Astronomical Society, 303, 188–206.

    Article  ADS  Google Scholar 

  • Kolb, E. W., & Turner, M. S. (1990). The early Universe. Addison-Wesley Publishing Co.

    MATH  Google Scholar 

  • Longair, M. S. (2011). High energy astrophysics (3rd ed.). Cambridge University Press.

    Book  Google Scholar 

  • Lynden-Bell, D. (1967). Statistical mechanics of violent relaxation in stellar systems. Monthly Notices of the Royal Astronomical Society, 136, 101–121.

    Article  ADS  Google Scholar 

  • McNally, S. J., & Peacock, J. A. (1995). The small-scale clustering power spectrum and relativistic decays. Monthly Notices of the Royal Astronomical Society, 277, 143–151.

    ADS  Google Scholar 

  • Norberg, P., Baugh, C. M., Hawkins, E., et al. (2001). The 2dF galaxy redshift survey: Luminosity dependence of galaxy clustering. Monthly Notices of the Royal Astronomical Society, 328, 64–70.

    Article  ADS  Google Scholar 

  • Norberg, P., Baugh, C. M., Hawkins, E., et al. (2002). The 2dF galaxy redshift survey: The dependence of galaxy clustering on luminosity and spectral type. Monthly Notices of the Royal Astronomical Society, 332, 827–838.

    Article  ADS  Google Scholar 

  • Ostriker, J. P., & Cowie, L. (1981). Galaxy formation in an intergalactic medium dominated by explosions. The Astrophysical Journal, 243, L127–L131.

    Article  ADS  Google Scholar 

  • Padmanabhan, T. (1997). Nonlinear gravitational clustering in the expanding Universe. In S. Dhurandhar, & T. Padmanabhan (Eds.), Gravitation and Cosmology: Proceedings of the ICGC-95 Conference, Pune (pp. 37–52). Kluwer Academic Publishers.

    Google Scholar 

  • Particle Data Group, Zyla, P. A., et al. (2021). Review of particle physics. Progress of Theoretical and Experimental Physics, 2021, 083C01. https://doi.org/10.1093/ptep/ptaa104

  • Peacock, J. (1999). Cosmological physics. Cambridge University Press.

    MATH  Google Scholar 

  • Peacock, J. A., & Dodds, S. J. (1994). Reconstructing the linear power spectrum of cosmological mass fluctuations. Monthly Notices of the Royal Astronomical Society, 267, 1020–1034.

    Article  ADS  Google Scholar 

  • Peacock, J. A., & Heavens, A. F. (1985). The statistics of maxima in primordial density perturbations. Monthly Notices of the Royal Astronomical Society, 217, 805–820.

    Article  ADS  Google Scholar 

  • Peacock, J. A., Cole, S., Norberg, P., et al. (2001). A measurement of the cosmological mass density from clustering in the 2dF galaxy redshift survey. Nature, 410, 169–173.

    Article  ADS  Google Scholar 

  • Peebles, P. (1982). Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. The Astrophysical Journal, 263, L1–L5.

    Article  ADS  Google Scholar 

  • Peebles, P. J. E. (1980). The large-scale structure of the Universe. Princeton University Press.

    MATH  Google Scholar 

  • Peebles, P. J. E. (1993). Principles of physical cosmology. Princeton University Press.

    MATH  Google Scholar 

  • Sunyaev, R., & Zeldovich, Y. (1970a). Small-scale fluctuations of relic radiation. Astrophysics and Space Science, 7, 3–19.

    Article  ADS  Google Scholar 

  • Sunyaev, R. A., & Zeldovich, Y. B. (1970b). Small scale entropy and adiabatic density perturbations: Antimatter in the Universe. Astrophysics and Space Science, 9(3), 368–382. https://doi.org/10.1007/BF00649577

    Article  ADS  Google Scholar 

  • Turok, N. (Ed.). (1997). Critical dialogues in cosmology. World Scientific.

    Google Scholar 

  • Verde, L., Heavens, A. F., Percival, W. J., et al. (2002). The 2dF galaxy redshift survey: The bias of galaxies and the density of the Universe. Monthly Notices of the Royal Astronomical Society, 335, 432–440.

    Article  ADS  Google Scholar 

  • Zeldovich, Y. (1972). A hypothesis, unifying the structure and the entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P–3P.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). Correlation Functions and the Spectrum of the Initial Fluctuations. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics