Skip to main content

Introduction to Restoration Ecology

  • Chapter
  • First Online:
  • 805 Accesses

Abstract

Restoration ecology is an interdisciplinary field of research that builds on the concepts and foundations of ecology and makes use of other disciplines of the natural and social sciences in both theory and practice. After a brief historical overview of restoration ecology or ecosystem restoration, important basic ecological terms and key concepts, as well as the concepts of ecosystem services and ecosystem degradation, are explained. As a basis for this interdisciplinary textbook, ecosystem restoration is defined to embed the numerous approaches to restoration for Central European ecosystems and land-use systems, respectively, in a comprehensive framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert C, Burkhard B, Daube S, Dietrich K, Engels B, Frommer J, Götzl M, Grêt-Regamey A, Job-Hoben B, Keller R, Marzelli S, Moning C, Müller F, Rabe S-E, Ring I, Schwaiger E, Schweppe-Kraft B, Wüstemann H (2015) Empfehlungen zur Entwicklung bundesweiter Indikatoren zur Erfassung von Ökosystemleistungen. BfN Skripten 410:1–55

    Google Scholar 

  • Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977) A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol 65:759–791

    Article  Google Scholar 

  • Anderson RC (2009) History and progress of ecological restoration in tallgrass prairie. In: Taylor C, Taft J, Warwick C (eds) Canaries in the catbird seat. INHS Special Publ 30:217–228

    Google Scholar 

  • Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci 5:387

    Article  Google Scholar 

  • Aronson J, Floret C, Le Floc’h E, Ovalle C, Pontanier R (1993) Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restor Ecol 1:8–17

    Article  Google Scholar 

  • Aronson J, Milton SJ, Blignaut JN (2007) Restoring natural capital: science, business, and practice. Island Press, Washington, DC

    Google Scholar 

  • Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, Herzog F (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013

    Article  Google Scholar 

  • Bannister N, Mant J, Janes M (2005) A review of catchment scale river restoration projects in the UK. Report. River Restoration Centre, Silsoe

    Google Scholar 

  • Barthlott W, Linsenmair KE, Porembski S (eds) (2008/2009) Biodiversity: structure and function, vol 1 & 2. Encyclopedia of Life Support Systems (EOLSS), Oxford

    Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic, Cambridge

    Google Scholar 

  • Baur B (2010) Biodiversität. UTB, Stuttgart

    Book  Google Scholar 

  • Beatley T (2010) Biophilic cities. Integrating nature into urban design and planning. Island Press, Washington, DC

    Google Scholar 

  • Begon M, Howarth RW, Townsend CR (2016) Ökologie, 3rd edn. Springer Spektrum, Heidelberg

    Google Scholar 

  • Begon M, Townsend CR, Harper JL (2005) Ecology: from individuals to ecosystems, 4th edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Bernstein JH (2015) Transdisciplinarity: a review of its origins, development, and current issues. J Res Pract 11(1):1–17

    Google Scholar 

  • Berr K (2017) Landschaftsarchitekturtheorie: Aktuelle Zugänge, Perspektiven und Positionen. Springer VS, Wiesbaden

    Google Scholar 

  • Biere A, van Andel J, Van de Koppel J (2012) Populations: ecology and genetics. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier, 2nd edn. Wiley-Blackwell, Oxford, pp 73–86

    Chapter  Google Scholar 

  • Björk S (2014) The fine art of restoring aquatic ecosystems. Knowledge and management of aquatic ecosystems. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Bobbink R, Hettelingh JP (2011) Review and revision of empirical critical loads and dose-response relationships. Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM). https://www.rivm.nl/bibliotheek/rapporten/680359002.pdf. Accessed 21 Nov 2016

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Bonnett SAF, Ross S, Linstead C, Maltby E (2009) A review of techniques for monitoring the success of peatland restoration. University of Liverpool. Nat England Comm Rep 86:1–179

    Google Scholar 

  • Bornkamm R (1985) Veränderungen der Phytomasse und Vegetationsentwicklung. In: Wolf G (ed) Primäre Sukzession auf kiesig-sandigen Rohböden im Rheinischen Braunkohlenrevier. Schrreihe Vegkd 16:111–151

    Google Scholar 

  • Bradshaw AD (1983) The reconstruction of ecosystems. J Appl Ecol 20:1–17

    Article  Google Scholar 

  • Bradshaw AD (1987) Restoration: an acid test for ecology. In: Jordan WR III, Gilpin ME, Aber JD (eds) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, Cambridge, pp 23–29

    Google Scholar 

  • Brand F, Hoheisel D, Kirchhoff T (2011) Der Resilienz-Ansatz auf dem Prüfstand: Herausforderungen, Probleme, Perspektiven. Laufen Spezbeitr 2011:78–83

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie, Grundzüge der Vegetationskunde, 3rd edn. Springer, Berlin

    Google Scholar 

  • Brülisauer A, Klötzli F (1998) Notes on the ecological restoration of fen meadows, ombrogenous bogs and rivers: definitions, techniques, problems. Bull Geobot Inst ETH 64:47–61

    Google Scholar 

  • Brunold C, Rüegsegger A, Brändle R (eds) (1996) Stress bei Pflanzen. Ökologie, Physiologie, Biochemie, Molekularbiologie. Ulmer, Stuttgart

    Google Scholar 

  • Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139

    Article  Google Scholar 

  • Cairns J, Heckman JR (1996) Restoration ecology: the state of an emerging field. Annu Rev Energ Env 21:167–189

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67

    Article  CAS  Google Scholar 

  • CBD (2016) Convention on biological diversity. https://www.cbd.int/convention/. Accessed 13 Oct 2016

  • Chapin FS III, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chapman JL, Reiss MJ (1999) Ecology: principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Choi YD, Temperton VM, Allen EB, Grootjan AP, Halassy M, Hobbs RJ, Naeth A, Török K (2008) Ecological restoration for future sustainability in a changing environment. Ecoscience 15:53–64

    Article  CAS  Google Scholar 

  • Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640

    Article  Google Scholar 

  • Clewell A, Aronson J (2013) Ecological restoration. Principles, values, and structure of an emerging profession, 2nd edn. Island Press, Washington, DC

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community. Stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Cooke GD (1999) Ecosystem rehabilitation. J Lake Reserv Manage 15(1):1–4

    Article  Google Scholar 

  • Cottam G (1987) Community dynamics on an artificial prairie. In: Jordan WR III, Gilpin ME, Aber JD (eds) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, New York, pp 257–270

    Google Scholar 

  • Day RT, Keddy PA, McNeill J, Carleton T (1988) Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69:1044–1054

    Article  Google Scholar 

  • De Visser S, Thébault E, de Ruiter PC (2013) Ecosystem engineers, keystone species. In: Leemans R (ed) Selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 59–68

    Google Scholar 

  • De Vries W, Hettelingh JP, Posch M (eds) (2015) Critical loads and dynamic risk assessments: nitrogen, acidity and metals in terrestrial and aquatic ecosystems. Springer, Amsterdam

    Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie—Grundlagen und Methoden. Ulmer, Stuttgart

    Google Scholar 

  • Dierßen K (1990) Einführung in die Pflanzensoziologie. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Doerpinghaus A, Bruker J (2016) Chance.natur—Naturschutzgroßprojekte in Deutschland. In: BLG—Bundesverband der gemeinnützigen Landgesellschaften (ed) Landesentwicklung Aktuell. Das Magazin des Bundesverbandes der gemeinnützigen Landgesellschaften 22:45–47

    Google Scholar 

  • Duckworth JC, Kent M, Ramsay PM (2000) Plant functional types: an alternative to taxonomic plant community description in biogeography? Progr Phys Geogr 24(4):515–542

    Article  Google Scholar 

  • Egan D, Hjerpe EE, Abrams J (2011) Human dimensions of ecological restoration: integrating science, nature, and culture (the science and practice of ecological restoration series). Island Press, Washington, DC

    Book  Google Scholar 

  • Ehrlich PR (1994) Energy use and biodiversity loss. Philos T Roy Soc B 344:99–104

    Article  Google Scholar 

  • Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One 6(1):e16055

    Article  CAS  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3rd ed. Scripta Geobotanica 18:1–258

    Google Scholar 

  • Ellenberg H, Mueller-Dombois D (1967) A key to Raunkiaer plant life forms with revised subdivisions. Ber Geobot Inst Eidgenöss Tech Hochsch, Stift Rübel 37:56–73

    Google Scholar 

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087

    Article  CAS  Google Scholar 

  • EU (2011) The EU biodiversity strategy to 2020. European Union, Luxemburg. http://ec.europa.eu/environment/nature/info/pubs/docs/brochures/2020%20Biod%20brochure%20final%20lowres.pdf. Accessed 31 Aug 2017

  • Fagúndez J (2013) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111(2):151–172

    Article  Google Scholar 

  • FAO (2011) Assessing forest degradation. Towards the development of globally applicable guidelines. Food and Agriculture Organization of the United Nations (FAO), Rom. For Res Assess Work Pap 177:1–109

    Google Scholar 

  • Fleming J, Ledogar RJ (2008) Resilience, an evolving concept: a review of literature relevant to aboriginal research. Pimatisiwin 6(2):7–23

    Google Scholar 

  • Florineth F (2012) Pflanzen statt Beton: Sichern und Gestalten mit Pfl anzen, 2nd edn. Patzer, Berlin

    Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Article  Google Scholar 

  • Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28(2):86–92

    Article  Google Scholar 

  • Frank D, Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR. Wiss Beitr Martin Luther Univ Halle Wittenberg 32:1–167

    Google Scholar 

  • Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349(6245):302–305

    Article  CAS  Google Scholar 

  • Freese G, Zwölfer H (1996) The problem of optimal clutch size in a tritrophic system: the oviposition strategy of the thistle gallfly Urophora cardui (Diptera, Tephritidae). Oecologia 108:293–302

    Article  Google Scholar 

  • Frey W, Lösch R (2014) Geobotanik: Pflanze und Vegetation in Raum und Zeit, 3rd edn. Springer Spektrum, Heidelberg

    Google Scholar 

  • Fry EL, Manning P, Allen DGP, Hurst A, Everwand G, Rimmler M, Power SA (2013) Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function. PLoS One 8(2):e57027

    Article  CAS  Google Scholar 

  • Fuchs D, Hänel K, Lipski A, Reich M, Finck P, Riecken U (2011) Länderübergreifender Biotopverbund in Deutschland. Grundlagen und Fachkonzept. Natschutz Biol Vielfalt 96:1–192

    Google Scholar 

  • Furse MT, Hering D, Brabec K, Buffagni A, Sandin L, Verdonschot PFM (2009) The ecological status of European rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht

    Google Scholar 

  • Gerstgraser C, Männel R, Müller G, Prugger H, Stowasser A, Tynior R (2005) Ufersicherung—Strukturverbesserung. Anwendung ingenieurbiologischer Bauweisen im Wasserbau, Handbuch 1. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, Dresden

    Google Scholar 

  • Glavac V (1996) Vegetationsökologie: Grundfragen, Aufgaben, Methoden. Fischer, Jena

    Google Scholar 

  • Gobster PH, Hull RB (eds) (2000) Restoring Nature: Perspectives from the Social Sciences and Humanities. Island Press, Washington, DC

    Google Scholar 

  • Graham JH, Duda JJ (2011) The humpbacked species richness-curve: a contingent rule for community ecology. Int J Ecol 2011:1–15

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Groot RS de, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408

    Google Scholar 

  • Grunewald K, Bastian O (eds) (2012) Ökosystemdienstleistungen. Konzept, Methoden und Fallbeispiele. Springer Spektrum, Heidelberg

    Google Scholar 

  • Hacker E, Johannsen R (2011) Ingenieurbiologie. Ulmer, Stuttgart

    Book  Google Scholar 

  • Haines-Young R, Potschin M (2018) Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the application of the revised structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf. Accessed 10 May 2017

  • Hanski I, Gaggiotti OF (eds) (2004) Ecology, genetics and evolution of metapopulations. Elsevier, Amsterdam

    Google Scholar 

  • Harper J, Clatworthy J, McNaughton I, Sagar G (1961) The evolution and ecology of closely related species living in the same area. Evolution 15:209–227

    Article  Google Scholar 

  • Hartmann L (1992) Ökologie und Technik: Analyse, Bewertung und Nutzung von Ökosystemen. Springer, Heidelberg

    Book  Google Scholar 

  • Herben T (2000) Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect. J Veg Sci 11(1):123–126

    Article  Google Scholar 

  • Higgs ES (1997) What is good ecological restoration? Conserv Biol 11:338–348

    Article  Google Scholar 

  • Hobbs RJ (2002) The ecological context: a landscape perspective. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Principles of restoration, vol 1. Cambridge University Press, Cambidge, pp 24–45

    Chapter  Google Scholar 

  • Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4:93–110

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duff y JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):105–108

    Google Scholar 

  • Hughes FMR, Rood SB (2003) Allocation of river flows for restoration of floodplain forest ecosystems: a review of approaches and their applicability in Europe. Environ Manag 32(1):12–33

    Article  Google Scholar 

  • Huston MA (1985) Patterns of species diversity on coral reefs. Ann Rev Ecol Syst 16:149–177

    Article  Google Scholar 

  • Ignatieva M, Ahrné K (2013) Biodiverse green infrastructure for the 21 st century: from “green desert” of lawns to biophilic cities. J Archit Urban 37(1):1–9

    Article  Google Scholar 

  • Isselstein J, Jeangros B, Pavlu V (2005) Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—a review. Agron Res 3:139–151

    Google Scholar 

  • IUCN (2016) IUCN red list of threatened species, version 2. http://www.iucnredlist.org. Accessed 13 Oct 2016

  • Jackson LL, Lopoukhine N, Hillyard D (1995) Ecological restoration: a definition and comments. Restor Ecol 3:71–75

    Article  Google Scholar 

  • Jackson ST, Hobbs RJ (2009) Ecological restoration in the light of ecological history. Science 325:567–569

    Article  CAS  Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1):69–78

    Article  CAS  Google Scholar 

  • Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111(3):641–648

    Article  Google Scholar 

  • Jedicke E (1994) Biotopverbund. Grundlagen und Maßnahmen einer neuen Naturschutzstrategie, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE, Isaacson JS, Johnson DN, Lamb P, Saul M, Winter-Nelson AE (1997) Meanings of environmental terms. J Environ Qual 26(3):581–589

    Article  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373–386

    Article  Google Scholar 

  • Jordan WR III, Lubick GM (2011) Making nature whole: a history of ecological restoration. Island Press, Washington, DC

    Book  Google Scholar 

  • Jørgensen D (2015) Ecological restoration as objective, target, and tool in international biodiversity policy. Ecol Soc 20(4):43

    Article  Google Scholar 

  • Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32(2):153–164

    Article  Google Scholar 

  • Jürging P (2006) Fließgewässer- und Auenentwicklung: Grundlagen und Erfahrungen. Springer, Heidelberg

    Google Scholar 

  • Kangas P (2004) Ecological engineering: principles and practice. CRC Press, Boca Raton

    Google Scholar 

  • Kellert SR, Wilson EO (eds) (1993) The Biophilia Hypothesis. Island Press, Washington, DC

    Google Scholar 

  • Koepcke HW (1973/1974) Die Lebensformen, Grundlagen zu einer universell gültigen biologischen Theorie, vol 1 and 2. Goecke & Evers, Krefeld

    Google Scholar 

  • Kowarik I (2010) Biologische Invasionen. Neophyten und Neozoen in Mitteleuropa, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Kratochwil A, Schwabe A (2001) Ökologie der Lebensgemeinschaften: Biozönologie. Ulmer, Stuttgart

    Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13(5):597–605

    Article  Google Scholar 

  • Land Hessen (2017) Life-Projekt Living Lahn. Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz. http://www.lila-livinglahn.de/seite/impressum/. Accessed 5 Sep 2017

  • Luscombe G, Scott R (2010) Creative conservation. In: Douglas I, Goode D, Houck M, Maddox D (eds) The Routledge handbook of urban ecology. Routledge, New York, pp 221–232

    Google Scholar 

  • Lepš J (2001) Species-pool hypothesis: limits to its testing. Folia Geobot 36:45–52

    Article  Google Scholar 

  • Leuschner C, Ellenberg H (2017a) Ecology of Central European forests, Vegetation ecology of Central Europe, vol 1. Springer, Cham

    Book  Google Scholar 

  • Leuschner C, Ellenberg H (2017b) Ecology of Central European non-forest vegetation: coastal to alpine, natural to man-made habitats, Vegetation ecology of Central Europe, vol 2. Springer, Cham

    Book  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton

    Book  Google Scholar 

  • Lund HG (2009) What is a degraded forest? Forest Information Services, Gainesville

    Google Scholar 

  • Lyytimäki J, Sipilä M (2009) Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For Urban Gree 8(4):309–315

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacMahon JA, Holl KD (2001) Ecological restoration: a key to conservation biology's future. In: Soulé ME, Orians GH (eds) Conservation biology: research priorities for the next decade. Island Press, Washington, DC, pp 24–269

    Google Scholar 

  • Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300

    Article  CAS  Google Scholar 

  • Maschinski J (2006) Implications of population dynamic and metapopulation theory for restoration. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 59–87

    Google Scholar 

  • McDonald T, Gann GD, Jonson J, Dixon KW (2016) International standards for the practice of ecological restoration—including principles and key concepts. Society for Ecological Restoration (SER), Washington, DC. http://c.ymcdn.com/sites/www.ser.org/resource/resmgr/docs/SER_International_Standards.pdf. Accessed 2 July 2017

  • McIsaac GF, Brün M (1999) Natural environment and human culture: defining terms and understanding worldviews. J Environ Qual 28:1–10

    Article  CAS  Google Scholar 

  • MEA (2005) Millenium ecosystem assessment. http://www.millenniumassessment.org/en/index.html. Accessed 13 Oct 2016

  • Miler O, Ostendorp W, Brauns M, Porst G, Pusch MT (2015) Ecological assessment of morphological shore degradation at whole lake level aided by aerial photo analysis. Fund Appl Limnol 186(4):353–369

    Article  Google Scholar 

  • Mitsch WJ, Jørgensen SE (2003) Ecological Engineering and Ecosystem Restoration. Wiley, New York

    Google Scholar 

  • Mittelstrass J (2011) On transdisciplinarity. Trames 15(4):329–338

    Article  Google Scholar 

  • Modica G, Merlino A, Solano F, Mercurio R (2015) An index for the assessment of degraded Mediterranean forest ecosystems. For Syst 24(3):e037

    Google Scholar 

  • Moreira F, Queiroz AI, Aronson J (2006) Restoration principles applied to cultural landscapes. J Nat Conserv 14(3):217–224

    Article  Google Scholar 

  • Moss T, Monstadt J (2008) Restoring floodplains in Europe. IWA Publishing, London

    Google Scholar 

  • Müller IB, Buhk C, Alt M, Entling MH, Schirmel J (2016) Plant functional shifts in Central European grassland under traditional flood irrigation. Appl Veg Sci 19:122–131

    Article  Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst Eidgenöss Tech Hochsch Stift Rübel Zür 85:1–263

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  Google Scholar 

  • Murphy J (ed) (2016) Seed banks: types, roles and research. Nova Science Publishers, New York

    Google Scholar 

  • Nentwig W, Bacher S, Brandl R (2012) Ökologie kompakt, 3rd edn. Springer Spektrum, Heidelberg

    Book  Google Scholar 

  • Neßhöver C (2013) Biodiversität: unsere wertvollste Ressource. Herder, Freiburg i. Br

    Google Scholar 

  • Odum EP, Barrett GW (2004) Fundamentals of ecology, 5th edn. Brooks Cole Publishing, Pacific Grove

    Google Scholar 

  • Olofsson H, Ripa J, Jonzén N (2009) Bet-hedging as an evolutionary game: the trade-off between egg size and number. P R Soc B 276(1669):2963–2969

    Article  Google Scholar 

  • Oomes MJM (1990) Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. J Veg Sci 1:333–338

    Article  Google Scholar 

  • Ormerod SJ (2003) Restoration in applied ecology: editor’s introduction. J Appl Ecol 40:44–50

    Article  Google Scholar 

  • Padisak J (1993) The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249:135–156

    Article  Google Scholar 

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36

    Article  Google Scholar 

  • Patten BC, Odum EP (1981) The cybernetic nature of ecosystems. Am Nat 118:886–895

    Article  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L, D’Cruze N, Faria D, Hadley A, Harris SM, Klingbeil BT, Kormann U, Lens L, Medina-Rangel GF, Morante-Filho JC, Olivier P, Peters SL, Pidgeon A, Ribeiro DB, Scherber C, Schneider-Maunoury L, Struebig M, UrbinaCardona N, Watling JI, Willig MR, Wood EM, Ewers RM (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  Google Scholar 

  • Philippi T (1993) Bet-Hedging Germination of desert annuals: beyond the first year. Am Nat 142(3):474–487

    Article  CAS  Google Scholar 

  • Piekarska-Stachowiak A, Szary M, Ziemer B, Besenyei L, Woźniak G (2014) An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecol Res 29:843–853

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  Google Scholar 

  • PONS (2016) Wörterbuch Schule und Studium LateinDeutsch. PONS, Stuttgart

    Google Scholar 

  • Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobot 38:263–271

    Article  Google Scholar 

  • Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2012) Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl Soil Ecol 57:39–49

    Article  Google Scholar 

  • Rapport DJ, Fyfe WS, Costanza R, Spiegel J, Yassi A, Böhm GM, Patil GP, Lannigan R, Anjema CM, Whitford WG, Horwitz P (2001) Ecosystem health: definitions, assessment, and case studies, Ecology, vol II. EOLSS, Oxford, pp 1–40

    Google Scholar 

  • Raunkiaer C (1934) The life-forms of plants and statistical plant geography. Clarendon Press, Oxford

    Google Scholar 

  • Ravera O (ed) (1989) Ecological assessment of environmental degradation, pollution and recovery. Elsevier, Amsterdam

    Google Scholar 

  • Redecker B, Finck P, Härdtle W, Riecken U, Schroder E (2002) Pasture landscapes and nature conservation. Springer, Heidelberg

    Book  Google Scholar 

  • Reichholf JH (2008) Ende der Artenvielfalt? Gefährdung und Vernichtung von Biodiversität, 2nd edn. Fischer, Frankfurt a. M

    Google Scholar 

  • Ren H, Yang L, Liu N (2008) Nurse plant theory and its application in ecological restoration in lower subtropics of China. Prog Nat Sci 18(2):137–142

    Article  Google Scholar 

  • Rentz M (2004) Transdiziplinarität der Ökologie. In: Brand F, Schaller F, Völker H (eds) Transdisziplinarität. Universitätsverlag Göttingen, Bestandsaufnahme und Perspektiven, pp 143–153

    Google Scholar 

  • Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012) Using plant functional traits to explain diversity-productivity relationships. PLoS One 7(5):e36760

    Article  CAS  Google Scholar 

  • Rubarenzya M, Staes J, Willems P, Berlamont J, Meire P (2008) Modelling in support of an interdisciplinary approach to ecosystem restitution. Annals of Warsaw University of life sciences—SGGW. Land Reclam 38:139–150

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff ALR, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Schiechtl HM, Stern R (1994) Handbuch für den naturnahen Wasserbau. Österreichischer Agrarverlag, Wien

    Google Scholar 

  • Schmid B, Stöcklin J (1991) Populationsbiologie der Pflanzen. Springer, Basel

    Book  Google Scholar 

  • Schölmerich U (2013) 70 Jahre forstliche Rekultivierung – Erfahrungen und Folgerungen. In: Pflug W (Ed) Braunkohlentagebau und Rekultivierung: Landschaftsökologie – Folgenutzung – Naturschutz. Springer, Heidelberg, pp 142–156

    Google Scholar 

  • Scholz RW (2011) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Scholz RW, Steiner G (2015a) The real type and ideal type of transdisciplinary processes: part I—theoretical foundations. Sustain Sci 10(4):527–544

    Article  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Heidelberg

    Google Scholar 

  • Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29(2):382–390

    Article  Google Scholar 

  • SER (2004) The SER international primer on ecological restoration. Society for Ecological Restoration International (SER). Tucson, Arizona. www.ser.org/. Accessed 28 May 2017

  • SER (2017) Academic programs. Society for Ecological Restoration International, Tucson, Arizona. http://www.ser.org/page/AcademicPrograms. Accessed 16 Sep 2017

  • Simula M (2009) Towards defining forest degradation: comparative analysis of existing definitions. Discussion paper, Food and Agriculture Organization (FAO). http://www.ardot.fi/Documents_2/Degradationdefintions.pdf. Accessed 26 Dec 2017

  • Skowronek S, Terwei A, Zerbe S, Mölder I, Annighöfer P, Kawaletz H, Ammer C, Heilmeier H (2013) Regeneration potential of floodplain forests under the influence of non-native tree species: soil seed bank analysis in northern Italy. Restor Ecol 22(1):22–30

    Article  Google Scholar 

  • Sliva J (1997) Renaturierung von industriell abgetorften Hochmooren am Beispiel der Kendlmühlfilzen. Herbert Utz, München

    Google Scholar 

  • Smith TM, Smith RL (2009) Ökologie, 6th edn. Pearson, Boston

    Google Scholar 

  • Speak A, Escobedo FJ, Russo A, Zerbe S (2018) An ecosystem service-disservice ratio: using composite indicators to assess the net benefits of urban trees. Ecol Indic 95:544–553

    Article  Google Scholar 

  • Sperry T (1983) Analysis of the University of Wisconsin-Madison prairie restoration project. In: Brewer R (ed) Proceedings of the 8th North American Prairie Conference. Western Michigan University, Kalamazoo, pp 140–146

    Google Scholar 

  • Squires VR (2016) Ecological Restoration: global challenges, social aspects and environmental benefits. Nova Science, New York

    Google Scholar 

  • Streit B (2007) Was ist Biodiversität? Erforschung, Schutz und Wert biologischer Vielfalt. Beck, München

    Google Scholar 

  • Succow M, Joosten H (2001) Landschaftsökologische Moorkunde, 2nd edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Suding KN, Gross KL (2006) The dynamic nature of ecological systems: multiple states and restoration trajectories. In: Falk DA, Palmer MA, Zedler J (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 190–209

    Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53

    Article  Google Scholar 

  • Svensson JR, Lindegarth M, Jonsson PR, Pavia H (2012) Disturbance—diversity models: what do they really predict and how are they tested? Proc Biol Sci 279(1736):2163–2170

    Google Scholar 

  • Swain HM, Boughton EH, Bohlen PJ, O’Gene LL (2013) Trade-off s among ecosystem services and disservices on a Florida ranch. Rangelands 35(5):75–87

    Article  Google Scholar 

  • Swart JAA, van der Windt HJ, Keulartz J (2001) Valuation of nature in conservation and restoration. Restor Ecol 9(2):230–238

    Article  Google Scholar 

  • Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Throop W (ed) (2000) Environmental restoration: ethics, theory and practice. Humanity Books, New York

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 137–149

    Chapter  Google Scholar 

  • Urbanska KM, Webb NR, Edwards PJ (2000) Restoration ecology and sustainable development. Cambridge University Press, Cambridge

    Google Scholar 

  • van Andel J, Aronson J (eds) (2012) Restoration ecology: the new frontier, 2nd edn. Oxford, Blackwell

    Google Scholar 

  • Van Diggelen R, Grootjans ABP, Harris JA (2001) Ecological restoration: state of the art or state of the science? Restor Ecol 9:115–118

    Article  Google Scholar 

  • Van Wieren SE (2012) Re-introductions: learning from successes and failures. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier, 2nd edn. Wiley-Blackwell, Oxford, pp 87–100

    Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Virto I, Imaz MJ, Fernández-Ugalde O, Gartzia-Bengoetxea N, Enrique A, Bescansa P (2015) Soil degradation and soil quality in Western Europe: current situation and future perspectives. Sustainability 7:313–365

    Article  Google Scholar 

  • Vogt J, Gillner S, Hoffman M, Tharang A, Dettmann S, Gerstenberg T, Schmidt C, Gebauer H, Van de Riet K, Berger U, Roloff A (2017) Citree: a database supporting supporting tree selection for urban areas in temperate climate. Landscape Urban Plan 157:14–25

    Article  Google Scholar 

  • Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497

    Article  Google Scholar 

  • Von Gillhaussen P, Rascher U, Jablonowski ND, Plückers C, Beierkuhnlein C, Temperton VM (2014) Priority effects of time of arrival of plant functional groups override sowing interval or density effects: a grassland experiment. PLoS One 9(1):e86906

    Article  Google Scholar 

  • Wäldchen J, Pusch J, Luthardt V (2005) Zur Diasporen-Keimfähigkeit von Segetalpflanzen—Untersuchungen in Nord-Thüringen. Beitr Forstwirtsch Landschökol 38(2):145–156

    Google Scholar 

  • Wegener M, Zedler P, Herrick B, Zedler J (2008) Curtis Prairie: 75-year-old restoration research site. Arboretum Leaflets 16:1–4

    Google Scholar 

  • Wendel D (2010) Autogene Regenerationserscheinungen in erzgebirgischen Moorwäldern und deren Bedeutung für Schutz und Entwicklung der Moore. Dissertation, TU Dresden

    Google Scholar 

  • Wheeler BD, Shaw SC (1991) Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. J Ecol 79:285–301

    Article  Google Scholar 

  • White PS, Jentsch A (2004) Disturbance, succession and community assembly in terrestrial plant communities. In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC, pp 342–366

    Google Scholar 

  • White PS, Pickett ST (1985) The ecology of natural disturbance and patch dynamics. Academic, New York

    Google Scholar 

  • White PS, Walker JL (1997) Approximating nature’s variation: selecting and using reference information in restoration ecology. Restor Ecol 5:338–349

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 12:213–251

    Article  Google Scholar 

  • WHO (2017a) Climate change and human health: land degradation and desertification. WHO, Geneva. http://www.who.int/globalchange/ecosystems/desert/en/. Accessed 1 Sep 2017

    Google Scholar 

  • Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84(1):145–147

    Article  Google Scholar 

  • Willems JH (1980) Observations on north-west European limestone grassland communities: an experimental approach to the study of species diversity and above-ground biomass in chalk grassland. P K Ned Akad C Biol 83:279–306

    Google Scholar 

  • Wilmanns O (1998) Ökologische Pflanzensoziologie: Eine Einführung in die Vegetation Mitteleuropas, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Wilson EO (1984) Biophilia. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Wilson EO (ed) (1988) Biodiversity. National Academies Press, Washington, DC

    Google Scholar 

  • Wittig R, Niekisch M (2014) Biodiversität: Grundlagen, Gefährdung, Schutz. Springer Spektrum, Heidelberg

    Book  Google Scholar 

  • Wohlgemuth T, Bürgi M, Scheidegger C, Schütz M (2002) Dominance reduction of species through disturbance—a proposed management principle for Central European forests. For Ecol Manag 166:1–15

    Article  Google Scholar 

  • Zeh H (2007) Ingenieurbiologie: Handbuch Bautypen. Verein f. Ingenieurbiologie. vdf Hochschulverlag, Zurich

    Google Scholar 

  • Zerbe S (2019) Zur Renaturierung mariner Ökosysteme. Beispiel Nord- und Ostsee—eine internationale Herausforderung. Natschutz Landschplan 51(3):116–123

    Google Scholar 

  • Zerbe S (2022) Restoration of multifunctional cultural landscapes. Merging tradition and innovation for a sustainable future. Springer. Landsc Ser 30:1–716

    Google Scholar 

  • Zerbe S, Maurer U, Schmitz S, Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148

    Article  Google Scholar 

  • Zerbe S, Ott K (2021) Pesticides, soil removal, and fire for the restoration of ecosystems? A call for ethical standards in ecosystem restoration. For Ecol Landsc Res Nat Conserv 20:59–73

    Google Scholar 

  • Zerbe S, Wiegleb G, Rosenthal G (2009) Einführung in die Renaturierungsökologie. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 1–21

    Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  CAS  Google Scholar 

  • Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determinants and its significance for community restoration. Appl Veg Sci 1(1):55–66

    Article  Google Scholar 

  • Zwick P (1992) Stream habitat fragmentation—a threat to biodiversity. Biodivers Conserv 1(2):80–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zerbe .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zerbe, S. (2023). Introduction to Restoration Ecology. In: Restoration of Ecosystems – Bridging Nature and Humans. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65658-7_1

Download citation

Publish with us

Policies and ethics