Skip to main content

Eukaryotes, Appearance and Early Evolution of

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 13 Accesses

Definition

Eukaryotes are the organisms belonging to the phylogenetic domain Eucarya. Eukaryotic cells are less diverse than prokaryotes (phylogenetic domains Archaea and Bacteria), but have a complex cellular architecture comprising a nucleus, a cytoskeleton (a proteinaceous network structuring the cytoplasm to facilitate intracellular traffic, endo- and exocytosis, phagocytosis, cellular division, cell membrane and wall deformation and amoeboid locomotion), an endomembrane system (a system of internal membranes subdivided into several organelles and used for synthesis, processing, packaging, and transport of macromolecules such as lipids and proteins), and organelles such as mitochondria (or derived organelles) and chloroplasts in photosynthetic eukaryotes.

Overview

Unicellular eukaryotes are called protists. They are very diverse and occur in all the supergroups of the eukaryotic tree (Burki et al. 2020). Multicellular eukaryotes include fungi, animals, algae, and plants. Models...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Agić H, Moczydłowska M, Yin L (2017) Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – a window into the early eukaryote evolution. Precambrian Res 297:101–130

    Article  ADS  Google Scholar 

  • Beghin J, Guilbaud R, Poulton SW, Gueneli N, Brocks JJ, Storme J-Y, Blanpied C, Javaux EJ (2017) A palaeoecological model for the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res 299:1–14

    Article  ADS  Google Scholar 

  • Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15(3):e2000735

    Article  Google Scholar 

  • Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PC, Pisani D (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol 2(10):1556–1562

    Article  Google Scholar 

  • Brocks JJ, Jarrett AJ, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548(7669):578–581

    Article  ADS  Google Scholar 

  • Bulzu PA, Andrei AŞ, Salcher MM, Mehrshad M, Inoue K, Kandori H, … Banciu HL (2019) Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 4:1129–1137

    Google Scholar 

  • Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35:43–55

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–211

    Article  ADS  Google Scholar 

  • Butterfield NJ (2015) Early evolution of the eukaryota. Palaeontology 58(1):5–17

    Article  Google Scholar 

  • Carlisle EM, Jobbins M, Pankhania V, Cunningham JA, Donoghue PC (2021) Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci Adv 7(5):eabe9487

    Article  ADS  Google Scholar 

  • Cavalier-Smith T, Chao EEY (2020) Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257:621–753

    Article  Google Scholar 

  • Chernikova D, Motamedi S, Csürös M, Koonin EV, Rogozin IB (2011) A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol Direct 6:26

    Article  Google Scholar 

  • Cohen PA, Macdonald FA (2015) The Proterozoic record of eukaryotes. Paleobiology 41:610–632

    Article  Google Scholar 

  • Cohen PA, Riedman LA (2018) It’s a protist-eat-protist world: recalcitrance, predation, and evolution 1074 in the Tonian–Cryogenian ocean. Emerg Top Life Sci 2:173–180

    Article  Google Scholar 

  • Dacks JB, Field MC, Buick R, Eme L, Gribaldo S, Roger AJ, … Devos DP (2016) The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J Cell Sci 129(20):3695–3703

    Google Scholar 

  • Devos DP (2021) Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 38(9):3531–3542

    Google Scholar 

  • Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6:a016139

    Article  Google Scholar 

  • Eme L, Spang A, Lombard J, Stairs CW, Ettema TJ (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol 15:711–723

    Article  Google Scholar 

  • Ettema TJ (2016) Evolution: mitochondria in the second act. Nature 531(7592):39

    Article  ADS  Google Scholar 

  • Gibson TM, Shih PM, Cumming VM, Fischer WW, Crockford PW, Hodgskiss MS, Wörndle S, Creaser RA, Rainbird RH, Skulski TM, Halverson GP (2017) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46(2):135–138

    Article  ADS  Google Scholar 

  • Gold DA, Caron A, Fournier GP, Summons RE (2017) Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543:420–423

    Google Scholar 

  • Hoshino Y, Gaucher EA (2021) Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc Natl Acad Sci 118(25)

    Google Scholar 

  • Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, … Matsui Y (2019) Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577(7791):519–525

    Google Scholar 

  • Javaux EJ (2007) The early eukaryotic fossil record. In: Jékely G (ed) Eukaryotic membranes and cytoskeleton, Advances in experimental medicine and biology, vol 607. Springer, New York, pp 1–19

    Chapter  Google Scholar 

  • Javaux EJ (2011) Evolution of early eukaryotes in Precambrian oceans. In: Gargaud M, Lopez-Garcia P, Martin H (eds) Origins and evolution of life: an astrobiology perspective. Cambridge University Press, Cambridge, UK, pp 414–449

    Chapter  Google Scholar 

  • Javaux EJ (2019) Challenges in evidencing the earliest traces of life. Nature 572(7770):451–460

    Article  ADS  Google Scholar 

  • Javaux E (2021). Early Eukaryogenesis and eukaryotic diversification. Geol Soc Am Abst Prog 53(6):2021. https://doi.org/10.1130/abs/2021AM-367904

  • Javaux EJ, Knoll AH (2017) Micropaleontology of the lower Mesoproterozoic Roper Group, Australia and implications for early eukaryote evolution. J Paleontol 91(2):199–229

    Article  Google Scholar 

  • Javaux EJ, Marshal CP (2006) A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Paleobot Palynol 139:1–15

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  ADS  Google Scholar 

  • Javaux EJ, Knoll AH, Walter M (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33(1):75–94

    Article  ADS  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2(3):121–132

    Article  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  ADS  Google Scholar 

  • Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol 6(1):a016121

    Article  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 361:1023–1038

    Article  Google Scholar 

  • Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 48(4):373–396

    Article  Google Scholar 

  • López-García P, Moreira D (2015) Open questions on the origin of eukaryotes. Trends Ecol Evol 30(11):697–708

    Article  Google Scholar 

  • López-García P, Moreira D (2019) Eukaryogenesis, a syntrophy affair. Nat Microbiol 4(7):1068

    Article  Google Scholar 

  • Loron CC, François C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ (2019) Early fungi from the Proterozoic era in Arctic Canada. Nature 570:232–235

    Article  ADS  Google Scholar 

  • Loron CC, Halverson GP, Rainbird RH, Skulski T, Turner EC, Javaux EJ (2021) Shale-hosted biota from the Dismal Lakes Group in Arctic Canada supports an early Mesoproterozoic diversification of eukaryotes. J Paleontology 1–25

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392(6671):37

    Article  ADS  Google Scholar 

  • Martin WF, Tielens AG, Mentel M, Garg SG, Gould SB (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiol Mol Biol Rev 81(3):e00008–17

    Google Scholar 

  • Miao L, Moczydłowska M, Zhu S, Zhu M (2019) New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Res 321:172–198

    Article  ADS  Google Scholar 

  • Moreira D, López-García P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47(5):517–530

    Article  ADS  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629

    Article  ADS  Google Scholar 

  • Porter S (2020) Insights into eukaryogenesis from the fossil record. Interface Focus 10(4):20190105

    Article  Google Scholar 

  • Prasad B, Uniyal SN, Asher R (2005) Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist 54:13–60

    Google Scholar 

  • Riedman LA, Sadler PM (2017) Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils. Precambrian Res 319:6–18

    Article  ADS  Google Scholar 

  • Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27(21):R1177–R1192

    Article  Google Scholar 

  • Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, … Ettema TJ (2019) Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 4:1129–1137

    Google Scholar 

  • Zhang S, Su J, Ma S, Wang H, He K, Wang H, Canfield DE (2021) Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Res 357:106–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle J. Javaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Javaux, E.J. (2023). Eukaryotes, Appearance and Early Evolution of. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65093-6_538

Download citation

Publish with us

Policies and ethics