Skip to main content

Ultra Weak Chemiluminescence Enhanced by Noble Metal Nanoparticle

  • Chapter
  • First Online:
Ultra-Weak Chemiluminescence
  • 247 Accesses

Abstract

Noble metal nanomaterials (NMNs) with fascinating physical and chemical properties are optimal foundation for design and also customizing nanoscale frameworks for particular technical applications. Especially, successfully regulating the size, morphology, composition, hybrid as well as microstructure of NMNs play an essential function on disclosing their brand-new or improved features and also application capacities, such as energy catalysis, analytical sensing, and biomedicine. NMNs-involved chemiluminescence (CL) has actually come to be a new and expanding area of interest in the last few years. The advancement of NMNs-involved CL systems and their application in chemical and biological analysis has been reviewed in this chapter. Additionally, application of various NMNs, including gold nanoparticles, platinum nanoparticles, silver nanoparticles and bimetallic nanoparticles in various CL systems has been emphasized. Moreover, the key challenges in this field and proposed possible solutions has been discussed for efficient and wider applications of CL analytical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  2. Cobley CM, Chen J, Cho EU et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56

    Article  CAS  PubMed  Google Scholar 

  3. Sau TK, Rogach A (2010) Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  PubMed  Google Scholar 

  4. Murray RW (2008) Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720

    Article  CAS  PubMed  Google Scholar 

  5. Peng Z, Yang H (2009) Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:143–164

    Article  CAS  Google Scholar 

  6. Chen J, Lim B, Lee EP et al (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95

    Article  Google Scholar 

  7. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    Article  CAS  Google Scholar 

  8. Dreaden EC, Alkilany AM, Huang X et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Zhu Y, Zhang X et al (2004) Recent developments in nanomaterial optical sensors. Trends Anal Chem 23(5):351–360

    Article  CAS  Google Scholar 

  10. Ding S, Wang L, He Z et al (2021) Identifying exogenous DNA in liquid foods by gold nanoparticles: potential applications in traceability. ACS Food Sci Technol 1:605–613

    Article  CAS  Google Scholar 

  11. Lin J-M, Yamada M (2000) Chemiluminescent reaction of fluorescent organic compounds with KHSO5 using cobalt(II) as catalyst and its first application to molecular imprinting. Anal Chem 72:1148–1155

    Article  CAS  PubMed  Google Scholar 

  12. Lu C, Song GQ, Lin J-M (2006) Reactive oxygen species and their chemiluminescence-detection methods. Trends Anal Chem 25:985–995

    Article  CAS  Google Scholar 

  13. Lin J-M, Yamada M (2003) Microheterogeneous systems of micelles and microemulsions as reaction media in chemiluminescent analysis. Trends Anal Chem 22:99–107

    Article  CAS  Google Scholar 

  14. Chen J, Qiu H, Zhao S (2020) Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. Trends Anal Chem 122:11574

    Article  Google Scholar 

  15. Li QQ, Zhang LJ, Li JG et al (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. Trends Anal Chem 30:401–413

    Article  Google Scholar 

  16. Zhang ZF, Cui H, Lai CZ et al (2005) Gold nanoparticle-catalyzed luminol Chemiluminescence and its analytical applications. Anal Chem 77:3324–3329

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yang P, Li YX et al (2007) A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles. Talanta 72:1066–1072

    Article  CAS  PubMed  Google Scholar 

  18. Li F, Wu YY, Liu JC et al (2018) Catalyst metal ions and luminol bifunctionalized gold nanoparticles: unique chemiluminescence property for Cu(II) monitoring. J Photochem Photobiol A Chem 352:19–24

    Google Scholar 

  19. Qi YY, Li BX, Zhang ZJ (2009) Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system. Biosens Bioelectron 24:3581–3586

    Article  CAS  PubMed  Google Scholar 

  20. Islam MS, Kang SH (2011) Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta 84:752–758

    Article  CAS  PubMed  Google Scholar 

  21. Qi YY, Li BX (2013) Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application. Spectrochim Acta A 111:1–6

    Article  CAS  Google Scholar 

  22. Liu W, Luo J, Zhao M et al (2016) Effect of amino compounds on luminol-H2O2-gold nanoparticle chemiluminescence system. Anal Bioanal Chem 408:8821–8830

    Article  CAS  PubMed  Google Scholar 

  23. Li YX, Yang P, Wang P et al (2007) Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal Bioanal Chem 387:585–592

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Luo J, Guo YM et al (2014) Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta 120:336–341

    Article  CAS  PubMed  Google Scholar 

  25. Khajvand T, Chaichi MJ, Colagar AH (2015) Sensitive assay of hexythiazox residue in citrus fruits using gold nanoparticles-catalysed luminol-H2O2 chemiluminescence. Food Chem 173:514–520

    Article  CAS  PubMed  Google Scholar 

  26. Qi YY, Xiu FR (2016) Sensitive and rapid chemiluminescence detection of propranolol based on effect of surface charge of gold nanoparticles. J Lumin 171:238–245

    Article  CAS  Google Scholar 

  27. Qi YY, He JH, Xiu FR et al (2019) A facile chemiluminescence sensing for ultrasensitive detection of heparin using charge effect of positively-charged AuNPs. Spectrochim Acta A 216:310–318

    Article  CAS  Google Scholar 

  28. Lan D, Li BX, Zhang ZJ (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:934–938

    Article  CAS  Google Scholar 

  29. Chaichi MJ, Ehsani MA (2016) Novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens Actuators B Chem 223:713–722

    Article  CAS  Google Scholar 

  30. Syed LU, Swisher LZ, Huff H et al (2013) Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-based chemical analyses. Analyst 138:5600–5609

    Article  CAS  PubMed  Google Scholar 

  31. Wu YC, Nie F (2015) Caspase-1 assay based on peptide and luminol labeled gold nanoparticle as chemiluminescence probe coupling magnetic separation technology. Sens Actuators B Chem 220:481–484

    Article  CAS  Google Scholar 

  32. He L, Jiang ZW, Li W et al (2018) In situ synthesis of gold nanoparticles/metal-organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl Mater Interfaces 10:28868–28876

    Article  CAS  PubMed  Google Scholar 

  33. Lu C, Li QQ, Chen S et al (2011) Gold nanorod-catalyzed luminol chemiluminescence and its selective determination of glutathione in the cell extracts of saccharomyces cerevisiae. Talanta 85:476–481

    Article  CAS  PubMed  Google Scholar 

  34. Li QQ, Liu F, Lu C et al (2011) Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. J Phys Chem C 115:10964–10970

    Article  CAS  Google Scholar 

  35. Chen QS, Bai SL, Lu C (2012) The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence. Talanta 89:142–148

    Article  CAS  PubMed  Google Scholar 

  36. Li QQ, Shang F, Lu C et al (2011) Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. J Chromatogr A 1218:9064–9070

    Article  CAS  PubMed  Google Scholar 

  37. Bai SL, Chen QS, Lu C et al (2013) Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta 768:96–101

    Article  CAS  PubMed  Google Scholar 

  38. Zhang LJ, Lu BQ, Lu C et al (2014) Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. J Sep Sci 37:30–36

    Article  CAS  PubMed  Google Scholar 

  39. Zhang QL, Wu L, Lv C et al (2012) A novel on-line gold nanoparticle-catalyzed luminol chemiluminescence detector for high-performance liquid chromatography. J Chromatogr A 1242:84–91

    Article  CAS  PubMed  Google Scholar 

  40. Mu CL, Zhang Q, Wu D et al (2015) Simultaneous quantification of catecholamines in rat brain by high-performance liquid chromatography with on-line gold nanoparticle-catalyzed luminol chemiluminescence detection. Biomed Chromatogr 29:148–155

    Article  CAS  PubMed  Google Scholar 

  41. Mu C-L, Wu D, Lu H-F et al (2017) Simultaneous and sensitive determination of levodopa and carbidopa in pharmaceutical formulation and human serum by high performance liquid chromatography with on-line gold nanoparticles catalyzed luminol chemiluminescence detection. Chin J Anal Chem 45:e1726–e1733

    Article  Google Scholar 

  42. Zhao SL, Niu TX, Song YR et al (2009) Gold nanoparticle-enhanced chemiluminescence detection for CE. Electrophoresis 30:1059–1065

    Article  CAS  PubMed  Google Scholar 

  43. Zhao SL, Lan XH, Liu YM (2008) Gold nanoparticles-enhanced capillary electrophoresis- chemiluminescence assay of trace uric acid. Electrophoresis 23:1–7

    CAS  Google Scholar 

  44. Cui H, Guo JZ, Li N et al (2008) Gold nanoparticle triggered chemiluminescence between luminol and AgNO3. J Phys Chem C 112:11319–11323

    Article  CAS  Google Scholar 

  45. Li N, Guo JZ, Liu B et al (2009) Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence. Anal Chim Acta 645:48–55

    Article  CAS  PubMed  Google Scholar 

  46. Qi YY, He JH, Xiu FR et al (2019) A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J 147:789–796

    Article  CAS  Google Scholar 

  47. Cai S, Lao KM, Lau C et al (2011) “Turn-on” chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles. Anal Chem 83:9702–9708

    Article  CAS  PubMed  Google Scholar 

  48. Li Q, Wang JH, He Y (2016) Selective chemiluminescent sensor for detection of mercury(II) ions using non-aggregated luminol-capped gold nanoparticles. Sens Actuators B Chem 231:64–69

    Article  CAS  Google Scholar 

  49. Wang ML, Kong YF, Li Y et al (2019) A chemiluminescence method for the determination of mercury(II) ions by tuning the catalytic activity of gold nanoparticles with ethylenediamine. Anal Methods 11:1317–1323

    Article  CAS  Google Scholar 

  50. Kamruzzaman M, Alam AM, Kim KM et al (2013) Chemiluminescence microfluidic system of gold nanoparticles enhanced luminol-silver nitrate for the determination of vitamin B12. Biomed Microdevices 15:195–202

    Article  CAS  PubMed  Google Scholar 

  51. Li Q, He Y (2017) An Ultrasensitive chemiluminescence sensor for sub-nanomolar detection of manganese(II) ions in mineral water using modified gold nanoparticles. Sens Actuators B Chem 243:454–459

    Article  CAS  Google Scholar 

  52. Duan CF, Cui H, Zhang ZF (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566

    Article  CAS  Google Scholar 

  53. Dong YP, Gao TT, Chu XF et al (2014) Flow injection-chemiluminescence determination of ascorbic acid based on luminol-ferricyanide-gold nanoparticles system. J Lumin 154:350–355

    Article  CAS  Google Scholar 

  54. Li SF, Li XZ, Xu J et al (2008) Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta 75:32–37

    Article  CAS  PubMed  Google Scholar 

  55. Zisimopoulos EG, Tsogas GZ, Giokas DL et al (2009) Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts. Talanta 79:893–899

    Article  CAS  PubMed  Google Scholar 

  56. Koutsoulis NP, Giokas DL, Vlessidis AG et al (2010) Alkaline earth metal effect on the size and color transition of citrate-capped gold nanoparticles and analytical implications in periodate-luminol chemiluminescence. Anal Chim Acta 669:45–52

    Article  CAS  PubMed  Google Scholar 

  57. Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610:243–248

    Google Scholar 

  58. Du JX, Quan JQ, Wang YD (2012) Chemiluminescence determination of timolol maleate by gold nanoparticles-catalyzed luminol-N-bromosuccinimide system. Talanta 90:117–122

    Article  CAS  PubMed  Google Scholar 

  59. Zhang LJ, Lu BQ, Lu C (2013) Chemiluminescence sensing of aminothiols in biological fluids using peroxymonocarbonate-prepared networked gold nanoparticles. Analyst 138:850–855

    Article  CAS  PubMed  Google Scholar 

  60. Halawa MI, Wu GX, Li BS (2021) Development of luminol-based chemiluminescence approach for ultrasensitive sensing of Hg(II) using povidone-I2 protected gold nanoparticles as an efficient coreactant. Anal Bioanal Chem 413:649–659

    Article  CAS  PubMed  Google Scholar 

  61. Cui H, Zhang ZF, Shi MJ et al (2005) Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide. Anal Chem 77:6402–6406

    Article  CAS  PubMed  Google Scholar 

  62. Liang SX, Li HF, Lin JM (2008) Reaction mechanism of surfactant-sensitized chemiluminescence of bis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles. Luminescence 23:381–385

    Article  CAS  PubMed  Google Scholar 

  63. Zargoosh K, Chaichi MJ, Shamsipur M (2012) Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta 93:37–43

    Article  CAS  PubMed  Google Scholar 

  64. Li LF, Lin D, Yang F et al (2021) Gold nanoparticle-based peroxyoxalate chemiluminescence system for highly sensitive and rapid detection of thiram pesticides. ACS Appl Nano Mater 4:3932–3939

    Article  CAS  Google Scholar 

  65. Cui H, Zhang ZF, Shi MJ (2005) Chemiluminescent reactions induced by gold nanoparticles. J Phys Chem B 109:3099–3103

    Article  CAS  PubMed  Google Scholar 

  66. Lin JM, Liu ML (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112:7850–7855

    Article  CAS  PubMed  Google Scholar 

  67. Lu C, Li JG, Yang Y et al (2010) Determination of bisphenol A based on chemiluminescence from gold(III)-peroxymonocarbonate. Talanta 82:1576–1580

    Article  CAS  PubMed  Google Scholar 

  68. Pan F, Liu L, Dong SC et al (2014) A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate. Spectrochim Acta A 128:393–397

    Article  CAS  Google Scholar 

  69. Li JG, Li QQ, Lu C et al (2011) Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II). Spectrochim Acta A 78:700–705

    Article  Google Scholar 

  70. Li JG, Li QQ, Lu C et al (2011) Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid. Analyst 136:2379–2384

    Article  CAS  PubMed  Google Scholar 

  71. Zhang ZF, Cui H, Shi MJ (2006) Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate. Phys Chem Chem Phys 8:1017–1021

    Article  CAS  PubMed  Google Scholar 

  72. Yu XJ, Bao JF (2009) Determination of norfloxacin using gold nanoparticles catalyzed cerium(IV)-sodium sulfite chemiluminescence. J Lumin 129:973–978

    Article  CAS  Google Scholar 

  73. Puja P, Kumar P (2019) A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta A 211:94–99

    Article  CAS  Google Scholar 

  74. Pedone D, Moglianetti M, De Luca E et al (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:4951–4975

    Article  CAS  PubMed  Google Scholar 

  75. Mudd GM (2012) Key trends in the resource sustainability of platinum group elements. Ore Geol Rev 46:106–117

    Article  Google Scholar 

  76. Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22:77–87

    Article  CAS  PubMed  Google Scholar 

  77. Niazov T, Shlyahovsky B, Willner I (2007) Photoswitchable electrocatalysis and catalyzed chemiluminescence using photoisomerizable monolayer-functionalized surfaces and Pt nanoparticles. J Am Chem Soc 129:6374–6375

    Article  CAS  PubMed  Google Scholar 

  78. Lim H, Ju Y, Kim J (2016) Tailoring catalytic activity of Pt nanoparticles encapsulated inside dendrimers by tuning nanoparticle sizes with subnanometer sccuracy for sensitive chemiluminescence-based analyses. Anal Chem 88:4751–4758

    Article  CAS  PubMed  Google Scholar 

  79. Zheng FJ, Ke W, Zhao Y et al (2019) Pt NPs catalyzed chemiluminescence method for Hg2+ detection based on a flow injection system. Electrophoresis 40:2218–2226

    Article  CAS  PubMed  Google Scholar 

  80. Duan CF, Cui H (2009) Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. Chem Commun 18:2574–2576

    Article  Google Scholar 

  81. Liu B, He Y, Duan CF et al (2011) Platinum nanoparticle-catalyzed lucigenin-hydrazine chemiluminescence. J Photochem Photobiol A Chem 217:62–67

    Article  CAS  Google Scholar 

  82. Kamruzzaman M, Alam AM, Lee SH et al (2013) Chemiluminescence microfluidic system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol-AgNO3 reaction. Sens Actuators B Chem 185:301–308

    Article  CAS  Google Scholar 

  83. Gorman BA, Francis PS, Dunstan DE et al (2007) Tris(2,2′-Bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles. Chem Commun 4:395–397

    Article  Google Scholar 

  84. Chen H, Gao F, He R et al (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315:158–163

    Article  CAS  PubMed  Google Scholar 

  85. Guo JZ, Cui H, Zhou W et al (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193:89–96

    Article  CAS  Google Scholar 

  86. Haghighi B, Bozorgzadeh S (2010) Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles. Microchem J 95:192–197

    Article  CAS  Google Scholar 

  87. Liu W, Kou J, Jiang XL et al (2012) Determination of nitrofurans in feeds based on silver nanoparticle-catalyzed chemiluminescence. J Lumin 132:1048–1054

    Article  CAS  Google Scholar 

  88. He Y, Xu B, Li WH et al (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63:2930–2934

    Article  CAS  PubMed  Google Scholar 

  89. He Y, He X, Liu X et al (2014) Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays. Anal Chem 86:12166–12171

    Article  CAS  PubMed  Google Scholar 

  90. Wang L, Tang Y (2011) Determination of dipyridamole using TCPO-H2O2 chemiluminescence in the presence of silver nanoparticles. Luminescence 26:703–709

    Article  CAS  PubMed  Google Scholar 

  91. Biparva P, Abedirad SM, Kazemi SY (2015) Silver nanoparticles enhanced a novel TCPO-H2O2-safranin O chemiluminescence system for determination of 6-mercaptopurine. Spectrochim Acta A 145:454–460

    Article  CAS  Google Scholar 

  92. Liu C, Li B (2011) Silver nanoparticle-initiated chemiluminescence reaction of luminol-AgNO3 and its analytical application. Anal Bioanal Chem 401:229–235

    Article  CAS  PubMed  Google Scholar 

  93. Li SF, Wang HY, Min X et al (2014) Chemiluminescence behavior of luminol-KIO4-Ag nanoparticles system and its analytical applications. J Biomed Sci Eng 7:307–315

    Article  Google Scholar 

  94. Li S, Sun H, Wang D et al (2012) Enhanced chemiluminescence of the luminol-AgNO3 system by Ag nanoparticles. Luminescence 27:211–216

    Article  PubMed  Google Scholar 

  95. Maddah B, Shamsi J, Barsang MJ et al (2015) The chemiluminescence determination of 2-chloroethyl ethyl sulfide using luminol-AgNO3-silver nanoparticles system. Spectrochim Acta A 142:220–225

    Article  CAS  Google Scholar 

  96. Chen X, Wang C, Tan X et al (2011) Determination of bisphenol A in water via inhibition of silver nanoparticles-enhanced chemiluminescence. Anal Chim Acta 689:92–96

    Article  CAS  PubMed  Google Scholar 

  97. Li N, Gu J, Cui H (2010) Luminol chemiluminescence induced by silver nanoparticles in the presence of nucleophiles and Cu2+. J Photochem Photobiol A Chem 215:185–190

    Article  CAS  Google Scholar 

  98. Guo JZ, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111:12254–12259

    Article  CAS  Google Scholar 

  99. Yu XJ, Jiang ZH, Wang QJ et al (2010) Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchim Acta 171:17–22

    Article  CAS  Google Scholar 

  100. Lee I, Han SW, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 1:1782–1783

    Article  Google Scholar 

  101. Ibañez FJ, Zamborini FP (2008) Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles. ACS Nano 2:1543–1552

    Article  PubMed  Google Scholar 

  102. Li N, Wang W, Tian DY et al (2010) PH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence. Chem Commun 46:1520–1522

    Article  CAS  Google Scholar 

  103. Li SF, Tao SJ, Wang FF et al (2010) Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchim Acta 169:73–78

    Article  CAS  Google Scholar 

  104. Chaichi MJ, Azizi SN, Heidarpour M (2013) A novel luminol chemiluminescent method catalyzed by silver/gold alloy nanoparticles for determination of anticancer drug flutamide. Spectrochim Acta A 116:594–598

    Article  CAS  Google Scholar 

  105. Chaichi MJ, Alijanpour SO (2014) Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H2O2-Cu2+/IL chemiluminescence system. J Photochem Photobiol B Biol 140:41–48

    Article  CAS  Google Scholar 

  106. Chaichi MJ, Alijanpour SO, Asghari S et al (2015) Evaluation of luminol chemiluminescence based on simultaneous introducing of coumarin derivatives as green fluorophores and chitosan-induced Au/Ag alloy nanoparticle as catalyst for the sensitive determination of glucose. J Fluoresc 25:263–275

    Article  CAS  PubMed  Google Scholar 

  107. Yu HL, He Y (2015) Seed-assisted synthesis of dendritic Au-Ag bimetallic nanoparticles with chemiluminescence activity and their application in glucose detection. Sens Actuators B Chem 209:877–882

    Article  CAS  Google Scholar 

  108. Zhang DK, Tang DL, Yamamoto T et al (2019) Improving biosynthesis of Au–Pd core-shell nanoparticles through escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation. J Inorg Biochem 199:110795

    Google Scholar 

  109. Gao BJ, Haghighatbin MA, Cui H (2020) Polymer-encapsulated cobalt/gold bimetallic nanoclusters as stimuli-responsive chemiluminescent nanoprobes for reactive oxygen species. Anal Chem 92:10677–10685

    Article  CAS  PubMed  Google Scholar 

  110. Zhang WS, Cao JT, Dong YX (2018) Enhanced chemiluminescence by Au-Ag core-shell nanoparticles: a general and practical biosensing platform for tumor marker detection. J Lumin 201:163–169

    Article  CAS  Google Scholar 

  111. Li SF, Li XZ, Zhang YQ et al (2009) Enhanced chemiluminescence of the luminol-KIO4 system by ZnS nanoparticles. Microchim Acta 167:103–108

    Article  CAS  Google Scholar 

  112. Chaichi MJ, Alijanpour SO (2013) Determination of vitamin C in drugs using of an optimized novel TCPO-amplex red-gold/silver alloy nanoparticles-H2O2 chemiluminescence method by the box-behnken design. J Lumin 134:195–200

    Article  CAS  Google Scholar 

  113. Chen H, Lin L, Li HF et al (2015) Aggregation-induced structure transition of protein-stabilized zinc/copper nanoclusters for amplified chemiluminescence. ACS Nano 9:2173–2183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Lu, C. (2022). Ultra Weak Chemiluminescence Enhanced by Noble Metal Nanoparticle. In: Lin, JM., Lu, C., Chen, H. (eds) Ultra-Weak Chemiluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64841-4_8

Download citation

Publish with us

Policies and ethics