Skip to main content

Tribology of Self-Lubricating Polymer Nanocomposites

  • Chapter
  • First Online:
Self-Lubricating Composites
  • 542 Accesses

Abstract

In the last few years, polymeric materials filled with different kinds of nanomaterials have attracted particular attention as useful alternatives in structural components subjected to severe friction and wear loading conditions. The intention of this chapter is to give a comprehensive picture of these nanofillers and to show their ability to improve friction and wear behavior of polymer composites. The aim is to organize the current state-of-the-art knowledge on these nanomaterials and point out on the key mechanisms governing their reinforcing effects. Despite the existing differences between literature results, there is a general agreement on the crucial role played by size, shape, concentration, and distribution of these fillers within the polymer matrix. The compatibility/interaction between filler and matrix is another important aspect in determining good filler dispersion and effective load transfer between the phases. As a consequence, the development of polymer nanocomposites showing high tribological features requires a deep selection of the nanofiller type and dimension along with its possible surface modification. Fortunately, modern technologies allow the design and the preparation of complex hybrid nanostructures able to put together the benefit of several structural factors. Although the state of the art demonstrates the potential of these materials, further researches are, however, necessary in order to definitely reach all possible improvements attainable for future high-demanding tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorrasi, G., Sorrentino, A.: Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015). https://doi.org/10.1039/C5GC00029G

    Article  CAS  Google Scholar 

  2. Rogers, B., Adams, J., Pennathur, S.: Nanotechnology: Understanding Small Systems. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  3. Reddy, B. (ed.): Advances in Diverse Industrial Applications of Nanocomposites. InTech (2011). https://doi.org/10.5772/1931

  4. Briscoe, B.J., Sinha, S.K.: Tribological applications of polymers and their composites – past, present and future prospects. In: Tribology of Polymeric Nanocomposites, pp. 1–22. Elsevier, Amsterdam (2013). https://doi.org/10.1016/B978-0-444-59455-6.00001-5

  5. Gnerre, C., Ciambelli, P., Altavilla, C., Sarno, M., Siraw, Y., Petrone, V., Senatore, A., Nobile, M.R., Somma, E.: Tribological and rheological properties of tungsten disulphide nanosheets as additive in lubricant mineral oil. In: Veneto Nanotech (ed.) International Conference Nanotechnology Nanomaterials, Venezia, pp. 177–178. (2010)

    Google Scholar 

  6. Menezes, P.L., Ingole, S.P., Nosonovsky, M., Kailas, S.V., Lovell, M.R.: Tribology for Scientists and Engineers. Springer, New York (2013)

    Book  Google Scholar 

  7. Delogu, F., Gorrasi, G., Sorrentino, A.: Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog. Mater. Sci. 86, 75–126 (2017). https://doi.org/10.1016/j.pmatsci.2017.01.003

    Article  CAS  Google Scholar 

  8. Davim, J.P.: Tribology of Nanocomposites. Springer, Berlin (2013)

    Book  Google Scholar 

  9. Caseri, W.: Nanocomposites of polymers and inorganic particles. In: Hybrid Materials, pp. 49–86. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007). https://doi.org/10.1002/9783527610495.ch2

    Chapter  Google Scholar 

  10. Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  11. Yin, Y., Talapin, D.: The chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2484 (2013). https://doi.org/10.1039/c3cs90011h

    Article  CAS  Google Scholar 

  12. Sorrentino, A.: Nanocoatings and ultra-thin films for packaging applications. In: Makhlouf, A.S.H., Tiginyanu, I. (eds.) Nanocoatings Ultra-Thin Film, pp. 203–234. Elsevier, Oxford (2011). https://doi.org/10.1533/9780857094902.2.203

    Chapter  Google Scholar 

  13. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear. 261, 140–144 (2006)

    Article  CAS  Google Scholar 

  14. Kim, D., Archer, L.A.: Nanoscale organic− inorganic hybrid lubricants. Langmuir. 27, 3083–3094 (2011)

    Article  CAS  Google Scholar 

  15. Stachowiak, G., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  16. Czichos, H.: Chapter: 1 Introduction and background. In: Tribology a Systems Approach to the Science and Technology of Friction, Lubrication and Wear, pp. 1–13. Elsevier, Berlin (1978). https://doi.org/10.1016/S0167-8922(09)70004-5

  17. Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. CRC press, Boca Raton (2009)

    Book  Google Scholar 

  18. Wang, Q., Chung, Y.: Encyclopedia of Tribology. Springer, New York (2013)

    Book  Google Scholar 

  19. Menezes, P.L., Kailas, S.V., Lovell, M.R.: Fundamentals of engineering surfaces. In: Tribology for Scientists and Engineering, pp. 3–41. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-1945-7_1

  20. Friedrich, K., Schlarb, A.K., Bahadur, S., Schwartz, C.: Tribology of Polymeric Nanocomposites. Elsevier, Amsterdam (2013). https://doi.org/10.1016/B978-0-444-59455-6.00002-7

    Article  Google Scholar 

  21. Guadagno, L., De Vivo, B., Di Bartolomeo, A., Lamberti, P., Sorrentino, A., Tucci, V., Vertuccio, L., Vittoria, V.: Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon N. Y. 49, 1919–1930 (2011)

    Article  CAS  Google Scholar 

  22. Baillie, C.: Green Composites, Polymer Composites and the Environment. CRC Press, Cambridge (2004)

    Book  Google Scholar 

  23. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007). https://doi.org/10.1002/mame.200600416

    Article  CAS  Google Scholar 

  24. Sorrentino, A., Tortora, M., Vittoria, V.: Diffusion behavior in polymer-clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 44, 265–274 (2006). https://doi.org/10.1002/polb.20684

    Article  CAS  Google Scholar 

  25. Sorrentino, A., Vertuccio, L., Vittoria, V.: Influence of multi-walled carbon nanotubes on the β form crystallization of syndiotactic polystyrene at low temperature. Express Polym Lett. 4, 339–345 (2010). https://doi.org/10.3144/expresspolymlett.2010.43

    Article  CAS  Google Scholar 

  26. Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  27. Gorrasi, G., Attanasio, G., Izzo, L., Sorrentino, A.: Controlled release mechanisms of sodium benzoate from a biodegradable polymer and halloysite nanotube composite. Polym. Int. 66, 690–698 (2017). https://doi.org/10.1002/pi.5309

    Article  CAS  Google Scholar 

  28. Liparoti, S., Landi, G., Sorrentino, A., Speranza, V., Cakmak, M., Neitzert, H.C.: Flexible poly(amide-imide)-carbon black based microheater with high-temperature capability and an extremely low temperature coefficient. Adv. Electron. Mater. 2, 1600126 (2016). https://doi.org/10.1002/aelm.201600126

    Article  CAS  Google Scholar 

  29. Gorrasi, G., Di Lieto, R., Patimo, G., De Pasquale, S., Sorrentino, A.: Structure–property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer (Guildf). 52, 1124–1132 (2011). https://doi.org/10.1016/j.polymer.2011.01.008

    Article  CAS  Google Scholar 

  30. Sorrentino, A., Gorrasi, G., Vittoria, V.: Environmental Silicate Nano-Biocomposites. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4108-2

    Book  Google Scholar 

  31. Ajayan, P.M., Schadler, L.S., Braun, P.V. (eds.): Nanocomposite Science and Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003). https://doi.org/10.1002/3527602127

    Book  Google Scholar 

  32. Bhushan, B.: Micro/Nanotribology and Its Applications. Springer Netherlands, Dordrecht (1997). https://doi.org/10.1007/978-94-011-5646-2

    Article  Google Scholar 

  33. Chand, N., Fahim, M.: Introduction to tribology of polymer composites. In: Tribology of Natural Fiber Polymer Composites, pp. 59–83. Elsevier, Cambridge (2008). https://doi.org/10.1533/9781845695057.59

  34. Schwartz, C.J., Bahadur, S.: Studies on the tribological behavior and transfer film–counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear. 237, 261–273 (2000)

    Article  CAS  Google Scholar 

  35. Wetzel, B., Haupert, F., Qiu Zhang, M.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63, 2055–2067 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5

    Article  CAS  Google Scholar 

  36. Bhushan, B.: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. Springer Netherlands, Dordrecht (2001). https://doi.org/10.1007/978-94-010-0736-8

    Article  Google Scholar 

  37. Chang, L., Zhang, Z., Ye, L., Friedrich, K.: Tribological properties of epoxy nanocomposites: III. Characteristics of transfer films. Wear. 262, 699–706 (2007)

    Article  CAS  Google Scholar 

  38. Hutchings, I., Shipway, P.: Design and selection of materials for tribological applications. In: Tribology Friction and Wear of Engineering Materials, pp. 283–302. Elsevier, Oxford (2017). https://doi.org/10.1016/B978-0-08-100910-9.00008-8

  39. Blanchet, T.A., Peng, Y.-L.: Wear resistant irradiated FEP/unirradiated PTFE composites. Wear. 214, 186–191 (1998). https://doi.org/10.1016/S0043-1648(97)00254-8

    Article  CAS  Google Scholar 

  40. Menzel, B., Blanchet, T.A.: Effect of particle size and volume fraction of irradiated FEP filler on the transfer wear of PTFE. Tribol. Lubr. Technol. 58, 29 (2002)

    CAS  Google Scholar 

  41. Wang, Q.-H., Xue, Q.-J., Liu, W.-M., Chen, J.-M.: The friction and wear characteristics of nanometer SiC and polytetrafluoroethylene filled polyetheretherketone. Wear. 243, 140–146 (2000)

    Article  CAS  Google Scholar 

  42. Lu, Z.P., Friedrich, K.: On sliding friction and wear of PEEK and its composites. Wear. 181, 624–631 (1995)

    Article  Google Scholar 

  43. Palabiyik, M., Bahadur, S.: Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear. 246, 149–158 (2000)

    Article  CAS  Google Scholar 

  44. Bahadur, S., Polineni, V.K.: Tribological studies of glass fabric-reinforced polyamide composites filled with CuO and PTFE. Wear. 200, 95–104 (1996)

    Article  CAS  Google Scholar 

  45. Liu, X., Li, T., Tian, N., Liu, W.: Tribological properties of PTFE-filled PMIA. J. Appl. Polym. Sci. 74, 747–751 (1999)

    Article  CAS  Google Scholar 

  46. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–153 (2005)

    Article  CAS  Google Scholar 

  47. Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear. 254, 573–580 (2003)

    Article  CAS  Google Scholar 

  48. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear. 260, 915–918 (2006)

    Article  CAS  Google Scholar 

  49. Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D.: Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15, 275–278 (2003)

    Article  CAS  Google Scholar 

  50. Li, F., Hu, K., Li, J., Zhao, B.: The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear. 249, 877–882 (2001)

    Article  CAS  Google Scholar 

  51. Wang, Q., Xue, Q., Liu, H., Shen, W., Xu, J.: The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear. 198, 216–219 (1996)

    Article  CAS  Google Scholar 

  52. Wang, Q., Xue, Q., Shen, W.: The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribol. Int. 30, 193–197 (1997)

    Article  CAS  Google Scholar 

  53. Bhimaraj, P., Burris, D.L., Action, J., Sawyer, W.G., Toney, C.G., Siegel, R.W., Schadler, L.S.: Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly (ethylene) terephthalate composites. Wear. 258, 1437–1443 (2005)

    Article  CAS  Google Scholar 

  54. Higgs, C.F., Marinack, M., Mpagazehe, J., Pudjoprawoto, R.: Particle tribology: granular, slurry, and powder tribosystems. In: Tribology for Scientists and Engineering, pp. 391–445. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-1945-7_12

  55. Schmid, G. (ed.) Nanoparticles: From Theory to Application, 2nd Completely Revised and Updated Edition. Wiley-VCH Verlag GmbH & Co. KGaA (2010)

    Google Scholar 

  56. Sun, L.-H., Yang, Z.-G., Li, X.-H.: Study on the friction and wear behavior of POM/Al2O3 nanocomposites. Wear. 264, 693–700 (2008)

    Article  CAS  Google Scholar 

  57. Zhao, L., Zheng, L., Zhao, S.: Tribological performance of nano-Al2O3 reinforced polyamide 6 composites. Mater. Lett. 60, 2590–2593 (2006)

    Article  CAS  Google Scholar 

  58. Zhang, G., Wetzel, B., Jim, B., Österle, W.: Impact of counterface topography on the formation mechanisms of nanostructured tribofilm of PEEK hybrid nanocomposites. Tribol. Int. 83, 156–165 (2015)

    Article  CAS  Google Scholar 

  59. Burris, D.L., Santos, K., Lewis, S.L., Liu, X., Perry, S.S., Blanchet, T.A., Schadler, L.S., Sawyer, W.G.: Polytetrafluoroethylene matrix nanocomposites for tribological applications. In: Developments of Nanocomposites/Coatings for Special Applications, pp. 403–438. Elsevier, Amsterdam (2008). https://doi.org/10.1016/S1572-3364(08)55017-8

  60. Wang, Y., Lim, S., Luo, J.L., Xu, Z.H.: Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings. Wear. 260, 976–983 (2006)

    Article  CAS  Google Scholar 

  61. Song, H.-J., Zhang, Z.-Z., Men, X.: Effect of nano-Al2O3 surface treatment on the tribological performance of phenolic composite coating. Surf. Coatings Technol. 201, 3767–3774 (2006)

    Article  CAS  Google Scholar 

  62. Wetzel, B., Haupert, F., Friedrich, K., Zhang, M.Q., Rong, M.Z.: Impact and wear resistance of polymer nanocomposites at low filler content. Polym. Eng. Sci. 42, 1919–1927 (2002)

    Article  CAS  Google Scholar 

  63. Luo, T., Wei, X., Zhao, H., Cai, G., Zheng, X.: Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram. Int. 40, 10103–10109 (2014)

    Article  CAS  Google Scholar 

  64. Shi, G., Zhang, M.Q., Rong, M.Z., Wetzel, B., Friedrich, K.: Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear. 256, 1072–1081 (2004)

    Article  CAS  Google Scholar 

  65. Bahadur, S., Tabor, D.: Role of fillers in the friction and wear behavior of high-density polyethylene. In: Polymeric Wear and Its Control, pp. 253–268. ACS Publications, New York (1985). https://doi.org/10.1021/bk-1985-0287.ch017

  66. Kato, K.: Wear in relation to friction – a review. Wear. 241, 151–157 (2000)

    Article  CAS  Google Scholar 

  67. Bahadur, S., Gong, D., Anderegg, J.W.: The role of copper compounds as fillers in transfer film formation and wear of nylon. Wear. 154, 207–223 (1992)

    Article  CAS  Google Scholar 

  68. Vande Voort, J., Bahadur, S.: Effect of PTFE Addition on the Transfer Film, Wear and Friction of PEEK-CuO Composite. American Society of Mechanical Engineers, New York (1995)

    Google Scholar 

  69. Yu, L., Yang, S., Liu, W., Xue, Q.: An investigation of the friction and wear behaviors of polyphenylene sulfide filled with solid lubricants. Polym. Eng. Sci. 40, 1825–1832 (2000). https://doi.org/10.1002/pen.11314

    Article  CAS  Google Scholar 

  70. Bahadur, S., Zhang, L., Anderegg, J.W.: The effect of zinc and copper oxides and other zinc compounds as fillers on the tribological behavior of thermosetting polyester. Wear. 203, 464–473 (1997)

    Article  Google Scholar 

  71. Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear. 98, 1–13 (1984)

    Article  CAS  Google Scholar 

  72. Kapoor, A., Bahadur, S.: Transfer film bonding and wear studies on CuS-nylon composite sliding against steel. Tribol. Int. 27, 323–329 (1994)

    Article  CAS  Google Scholar 

  73. Vande Voort, J., Bahadur, S.: The growth and bonding of transfer film and the role of CuS and PTFE in the tribological behavior of PEEK. Wear. 181, 212–221 (1995)

    Article  Google Scholar 

  74. Yu, L., Bahadur, S.: An investigation of the transfer film characteristics and the tribological behaviors of polyphenylene sulfide composites in sliding against tool steel. Wear. 214, 245–251 (1998)

    Article  CAS  Google Scholar 

  75. Schwartz, C.J., Bahadur, S.: The role of filler deformability, filler–polymer bonding, and counterface material on the tribological behavior of polyphenylene sulfide (PPS). Wear. 251, 1532–1540 (2001)

    Article  Google Scholar 

  76. Cho, M.H., Bahadur, S.: Study of the tribological synergistic effects in nano CuO-filled and fiber-reinforced polyphenylene sulfide composites. Wear. 258, 835–845 (2005)

    Article  CAS  Google Scholar 

  77. Song, H.-J., Zhang, Z.-Z., Men, X.-H., Luo, Z.-Z.: A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings. Wear. 269, 79–85 (2010)

    Article  CAS  Google Scholar 

  78. Bahadur, S., Sunkara, C.: Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear. 258, 1411–1421 (2005)

    Article  CAS  Google Scholar 

  79. Zhang, Z., Breidt, C., Chang, L., Haupert, F., Friedrich, K.: Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos. Part A Appl. Sci. Manuf. 35, 1385–1392 (2004)

    Article  Google Scholar 

  80. Chang, L., Zhang, Z., Zhang, H., Friedrich, K.: Effect of nanoparticles on the tribological behaviour of short carbon fibre reinforced poly (etherimide) composites. Tribol. Int. 38, 966–973 (2006)

    Article  Google Scholar 

  81. Chang, L., Zhang, Z., Zhang, H., Schlarb, A.K.: On the sliding wear of nanoparticle filled polyamide 66 composites. Compos. Sci. Technol. 66, 3188–3198 (2006)

    Article  CAS  Google Scholar 

  82. You, Y.-L., Li, D.-X., Si, G.-J., Deng, X.: Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite. Wear. 311, 57–64 (2014)

    Article  CAS  Google Scholar 

  83. Su, F., Zhang, Z., Liu, W.: Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates. Wear. 260, 861–868 (2006)

    Article  CAS  Google Scholar 

  84. Shao, X., Tian, J., Liu, W., Xue, Q., Ma, C.: Tribological properties of SiO2 nanoparticle filled–phthalazine ether sulfone/phthalazine ether ketone (50/50 mol%) copolymer composites. J. Appl. Polym. Sci. 85, 2136–2144 (2002)

    Article  CAS  Google Scholar 

  85. Zhang, M.Q., Rong, M.Z., Yu, S.L., Wetzel, B., Friedrich, K.: Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear. 253, 1086–1093 (2002)

    Article  CAS  Google Scholar 

  86. Wang, Z.Z., Gu, P., Zhang, Z.: Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale. Wear. 269, 21–25 (2010)

    Article  CAS  Google Scholar 

  87. Li, Y., Ma, Y., Xie, B., Cao, S., Wu, Z.: Dry friction and wear behavior of flame-sprayed polyamide1010/n-SiO2 composite coatings. Wear. 262, 1232–1238 (2007)

    Article  CAS  Google Scholar 

  88. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules. 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  89. Kumar, S., Doshi, H., Srinivasarao, M., Park, J.O., Schiraldi, D.A.: Fibers from polypropylene/nano carbon fiber composites. Polymer (Guildf). 43, 1701–1703 (2002)

    Article  CAS  Google Scholar 

  90. De Zhang, W., Shen, L., Phang, I.Y., Liu, T.: Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules. 37, 256–259 (2004)

    Article  CAS  Google Scholar 

  91. Nobile, M.R., Valentino, O., Morcom, M., Simon, G.P., Landi, G., Neitzert, H.-C.: The effect of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE nanocomposites. Polym. Eng. Sci. 57, 665–673 (2017). https://doi.org/10.1002/pen.24572

    Article  CAS  Google Scholar 

  92. Lai, S., Yue, L., Li, T., Liu, X., Lv, R.: An investigation of friction and wear behaviors of polyimide/attapulgite hybrid materials. Macromol. Mater. Eng. 290, 195–201 (2005)

    Article  CAS  Google Scholar 

  93. Ambrosio-Martin, J., Fabra, M.J., López-Rubio, A., Gorrasi, G., Sorrentino, A., Lagaron, J.M.: Assessment of ball milling as a compounding technique to develop nanocomposites of poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) and bacterial cellulose nanowhiskers. J. Polym. Environ. 24, 241–254 (2016)

    Article  CAS  Google Scholar 

  94. Vertuccio, L., Gorrasi, G., Sorrentino, A., Vittoria, V.: Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr. Polym. 75, 172–179 (2009). https://doi.org/10.1016/j.carbpol.2008.07.020

    Article  CAS  Google Scholar 

  95. Dolmatov, V.Y.: Detonation nanodiamonds in oils and lubricants. J. Superhard Mater. 32, 14–20 (2010)

    Article  Google Scholar 

  96. Dubkova, V.I., Korzhenevskii, A.P., Krut, N.P., Komarevich, V.G., Kul, L.V.: Detonation-synthesis nanodiamonds in compositions of ultrahigh-molecular-weight polyethylene. J. Eng. Phys. Thermophys. 89, 1024–1033 (2016)

    Article  CAS  Google Scholar 

  97. Jurkowska, B., Jurkowski, B., Kamrowski, P., Pesetskii, S.S., Koval, V.N., Pinchuk, L.S., Olkhov, Y.A.: Properties of fullerene-containing natural rubber. J. Appl. Polym. Sci. 100, 390–398 (2006)

    Article  CAS  Google Scholar 

  98. Wang, J., Gu, M., Songhao, B., Ge, S.: Investigation of the influence of MoS2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites. Wear. 255, 774–779 (2003). https://doi.org/10.1016/S0043-1648(03)00268-0

    Article  CAS  Google Scholar 

  99. Suresha, B., Chandramohan, G., Renukappa, N.M.: Mechanical and tribological properties of glass–epoxy composites with and without graphite particulate filler. J. Appl. Polym. Sci. 103, 2472–2480 (2007)

    Article  CAS  Google Scholar 

  100. Khun, N.W., Zhang, H., Lim, L.H., Yue, C.Y., Hu, X., Yang, J.: Tribological properties of short carbon fibers reinforced epoxy composites. Friction. 2, 226–239 (2014)

    Article  CAS  Google Scholar 

  101. Quan, H., Zhang, B., Zhao, Q., Yuen, R.K.K., Li, R.K.Y.: Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos. Part A Appl. Sci. Manuf. 40, 1506–1513 (2009)

    Article  Google Scholar 

  102. Song, F., Wang, Q., Wang, T.: High mechanical and tribological performance of polyimide nanocomposites reinforced by chopped carbon fibers in adverse operating conditions. Compos. Sci. Technol. 134, 251–257 (2016)

    Article  CAS  Google Scholar 

  103. Larsen, T.Ø., Andersen, T.L., Thorning, B., Horsewell, A., Vigild, M.E.: Changes in the tribological behavior of an epoxy resin by incorporating CuO nanoparticles and PTFE microparticles. Wear. 265, 203–213 (2008)

    Article  CAS  Google Scholar 

  104. Qian, F., Melhachat, B., Chen, C., Jiang, K., Zhao, Z., Yang, X.: A Mössbauer study of iron/polytetrafluoroethylene nanocomposites prepared by high-energy ball milling. Nucl. Sci. Tech. 17, 139–142 (2006). https://doi.org/10.1016/S1001-8042(06)60027-4

    Article  CAS  Google Scholar 

  105. Rong, M.Z., Zhang, M.Q., Shi, G., Ji, Q.L., Wetzel, B., Friedrich, K.: Graft polymerization onto inorganic nanoparticles and its effect on tribological performance improvement of polymer composites. Tribol. Int. 36, 697–707 (2003)

    Article  CAS  Google Scholar 

  106. Xing, X.S., Li, R.K.Y.: Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles. Wear. 256, 21–26 (2004)

    Article  CAS  Google Scholar 

  107. Friedrich, K., Zhang, Z., Schlarb, A.: Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 65, 2329–2343 (2005). https://doi.org/10.1016/j.compscitech.2005.05.028

    Article  CAS  Google Scholar 

  108. Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002). https://doi.org/10.1016/S0039-6028(01)01558-8

    Article  CAS  Google Scholar 

  109. Gorrasi, G., Sorrentino, A.: Photo-oxidative stabilization of carbon nanotubes on polylactic acid. Polym. Degrad. Stab. 98, 963–971 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.02.012

    Article  CAS  Google Scholar 

  110. De Vivo, B., Lamberti, P., Tucci, V., Guadagno, L., Vertuccio, L., Vittoria, V., Sorrentino, A.: Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications. Adv. Polym. Technol. 31, 205–218 (2012). http://www.scopus.com/inward/record.url?eid=2-s2.0-84864683182&partnerID=40&md5=de0bac503009e539f5488443837fb5e5

  111. Wang, C., Xue, T., Dong, B., Wang, Z., Li, H.-L.: Polystyrene–acrylonitrile–CNTs nanocomposites preparations and tribological behavior research. Wear. 265, 1923–1926 (2008)

    Article  CAS  Google Scholar 

  112. Al-Kawaz, A., Rubin, A., Badi, N., Blanck, C., Jacomine, L., Janowska, I., Pham-Huu, C., Gauthier, C.: Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Mater. Chem. Phys. 175, 206–214 (2016)

    Article  CAS  Google Scholar 

  113. Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater. Sci. Eng. R Reports. 63, 31–80 (2009). https://doi.org/10.1016/j.mser.2008.10.001

    Article  CAS  Google Scholar 

  114. Yang, Z., Dong, B., Huang, Y., Liu, L., Yan, F.-Y., Li, H.-L.: Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Mater. Chem. Phys. 94, 109–113 (2005)

    Article  CAS  Google Scholar 

  115. Liu, S., Hsu, W., Chang, K., Yeh, J.: Enhancement of the surface and bulk mechanical properties of polystyrene through the incorporation of raw multiwalled nanotubes with the twin-screw mixing technique. J. Appl. Polym. Sci. 113, 992–999 (2009)

    Article  CAS  Google Scholar 

  116. Martínez-Hernández, A.L., Velasco-Santos, C., Castano, V.: Carbon nanotubes composites: processing, grafting and mechanical and thermal properties. Curr. Nanosci. 6, 12–39 (2010)

    Article  Google Scholar 

  117. Jacobs, O., Xu, W., Schädel, B., Wu, W.: Wear behaviour of carbon nanotube reinforced epoxy resin composites. Tribol. Lett. 23, 65–75 (2006)

    Article  CAS  Google Scholar 

  118. Chen, H., Jacobs, O., Wu, W., Rüdiger, G., Schädel, B.: Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polym. Test. 26, 351–360 (2007)

    Article  CAS  Google Scholar 

  119. Zoo, Y.-S., An, J.-W., Lim, D.-P., Lim, D.-S.: Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol. Lett. 16, 305–309 (2004)

    Article  CAS  Google Scholar 

  120. Kanagaraj, S., Varanda, F.R., Zhil’tsova, T.V., Oliveira, M.S.A., Simões, J.A.O.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67, 3071–3077 (2007). https://doi.org/10.1016/j.compscitech.2007.04.024

    Article  CAS  Google Scholar 

  121. Lee, J., Kathi, J., Rhee, K.Y., Lee, J.H.: Wear properties of 3-aminopropyltriethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym. Eng. Sci. 50, 1433–1439 (2010)

    Article  CAS  Google Scholar 

  122. Bin Ali, A., Abdul Samad, M., Merah, N.: UHMWPE hybrid nanocomposites for improved tribological performance under dry and water-lubricated sliding conditions. Tribol. Lett. 65, 102 (2017). https://doi.org/10.1007/s11249-017-0884-y

    Article  CAS  Google Scholar 

  123. Samad, M.A., Sinha, S.K.: Effects of counterface material and UV radiation on the tribological performance of a UHMWPE/CNT nanocomposite coating on steel substrates. Wear. 271, 2759–2765 (2011)

    Article  Google Scholar 

  124. Kim, J., Im, H., Cho, M.H.: Tribological performance of fluorinated polyimide-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Wear. 271, 1029–1038 (2011)

    Article  CAS  Google Scholar 

  125. Vail, J.R., Burris, D.L., Sawyer, W.G.: Multifunctionality of single-walled carbon nanotube–polytetrafluoroethylene nanocomposites. Wear. 267, 619–624 (2009)

    Article  CAS  Google Scholar 

  126. May, B., Hartwich, M.R., Stengler, R., Hu, X.G.: The influence of carbon nanotubes on the tribological behavior and wear resistance of a polyamide nanocomposite. In: Advance Tribology, pp. 515–515, Springer, Berlin/Heidelberg (2009). https://doi.org/10.1007/978-3-642-03653-8_163

  127. Meng, H., Sui, G.X., Xie, G.Y., Yang, R.: Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos. Sci. Technol. 69, 606–611 (2009)

    Article  CAS  Google Scholar 

  128. Giraldo, L.F., López, B.L., Brostow, W.: Effect of the type of carbon nanotubes on tribological properties of polyamide 6. Polym. Eng. Sci. 49, 896–902 (2009)

    Article  CAS  Google Scholar 

  129. Armstrong, G., Ruether, M., Blighe, F., Blau, W.: Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym. Int. 58, 1002–1009 (2009)

    Article  CAS  Google Scholar 

  130. Li, J., Zhang, L.Q.: The effects of adding carbon nanotubes to the mechanical and tribological properties of a carbon fibre reinforced polyether ether ketone composite. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223, 2501–2507 (2009)

    Article  Google Scholar 

  131. Cai, H., Yan, F., Xue, Q.: Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater. Sci. Eng. A. 364, 94–100 (2004)

    Article  Google Scholar 

  132. Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267–1269 (2002)

    Article  CAS  Google Scholar 

  133. Liu, Q., Ren, W., Chen, Z.-G., Yin, L., Li, F., Cong, H., Cheng, H.-M.: Semiconducting properties of cup-stacked carbon nanotubes. Carbon N. Y. 47, 731–736 (2009)

    Article  CAS  Google Scholar 

  134. Endo, M., Kim, Y.A., Ezaka, M., Osada, K., Yanagisawa, T., Hayashi, T., Terrones, M., Dresselhaus, M.S.: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett. 3, 723–726 (2003)

    Article  CAS  Google Scholar 

  135. Choi, Y.-K., Gotoh, Y., Sugimoto, K., Song, S.-M., Yanagisawa, T., Endo, M.: Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer (Guildf). 46, 11489–11498 (2005)

    Article  CAS  Google Scholar 

  136. Yokozeki, T., Iwahori, Y., Ishiwata, S.: Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. Part A Appl. Sci. Manuf. 38, 917–924 (2007)

    Article  Google Scholar 

  137. Yokozeki, T., Iwahori, Y., Ishiwata, S., Enomoto, K.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. Part A Appl. Sci. Manuf. 38, 2121–2130 (2007)

    Article  Google Scholar 

  138. Werner, P., Altstädt, V., Jaskulka, R., Jacobs, O., Sandler, J.K.W., Shaffer, M.S.P., Windle, A.H.: Tribological behaviour of carbon-nanofibre-reinforced poly (ether ether ketone). Wear. 257, 1006–1014 (2004)

    Article  CAS  Google Scholar 

  139. Zhang, L.C., Zarudi, I., Xiao, K.Q.: Novel behaviour of friction and wear of epoxy composites reinforced by carbon nanotubes. Wear. 261, 806–811 (2006)

    Article  CAS  Google Scholar 

  140. Yang, Z., Dong, B., Huang, Y., Liu, L., Yan, F.-Y., Li, H.-L.: A study on carbon nanotubes reinforced poly (methyl methacrylate) nanocomposites. Mater. Lett. 59, 2128–2132 (2005)

    Article  CAS  Google Scholar 

  141. Elinski, M.B., Liu, Z., Spear, J.C., Batteas, J.D.: 2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2. J. Phys. D. Appl. Phys. 50, 103003 (2017). http://stacks.iop.org/0022-3727/50/i=10/a=103003

  142. Pan, B., Tan, J., Jia, H., Chen, J., Tai, Y., Liu, J., Zhang, Y., Niu, Q.: Tribological behavior of phenolic nanocomposites reinforced by 2D atomic crystal of boron nitride. J. Polym. Mater. 33, 567 (2016)

    CAS  Google Scholar 

  143. Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A. 39, 2804–2814 (2008). https://doi.org/10.1007/s11661-008-9603-5

    Article  CAS  Google Scholar 

  144. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Reports. 28, 1–63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  145. Yu, Y., Gu, J., Kang, F., Kong, X., Mo, W.: Surface restoration induced by lubricant additive of natural minerals. Appl. Surf. Sci. 253, 7549–7553 (2007)

    Article  CAS  Google Scholar 

  146. Lange, J., Wyser, Y.: Recent innovations in barrier technologies for plastic packaging? A review. Packag. Technol. Sci. 16, 149–158 (2003). https://doi.org/10.1002/pts.621

    Article  CAS  Google Scholar 

  147. Sorrentino, A., Pantani, R., Brucato, V.: Injection molding of syndiotactic polystyrene/clay nanocomposites. Polym. Eng. Sci. 46, 1768–1777 (2006)

    Article  CAS  Google Scholar 

  148. Gorrasi, G., Milone, C., Piperopoulos, E., Lanza, M., Sorrentino, A.: Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Appl. Clay Sci. 71, 49–54 (2013). https://doi.org/10.1016/j.clay.2012.11.004

    Article  CAS  Google Scholar 

  149. Raka, L., Sorrentino, A., Bogoeva-Gaceva, G.: Isothermal crystallization kinetics of polypropylene latex-based nanocomposites with organo-modified clay. J. Polym. Sci. Part B Polym. Phys. 48, 1927–1938 (2010). https://doi.org/10.1002/polb.22069

    Article  CAS  Google Scholar 

  150. Hussain, F.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 1511–1575 (2006). https://doi.org/10.1177/0021998306067321

    Article  CAS  Google Scholar 

  151. Dasari, A., Yu, Z.-Z., Mai, Y.-W., Hu, G.-H., Varlet, J.: Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes. Compos. Sci. Technol. 65, 2314–2328 (2005)

    Article  CAS  Google Scholar 

  152. Jawahar, P., Gnanamoorthy, R., Balasubramanian, M.: Tribological behaviour of clay–thermoset polyester nanocomposites. Wear. 261, 835–840 (2006)

    Article  CAS  Google Scholar 

  153. Yuan, Q., Ramisetti, N., Misra, R.D.K.: Nanoscale near-surface deformation in polymer nanocomposites. Acta Mater. 56, 2089–2100 (2008). https://doi.org/10.1016/j.actamat.2007.12.051

    Article  CAS  Google Scholar 

  154. Srinath, G., Gnanamoorthy, R.: Effect of nanoclay reinforcement on tensile and tribo behaviour of Nylon 6. J. Mater. Sci. 40, 2897–2901 (2005)

    Article  CAS  Google Scholar 

  155. Srinath, G., Gnanamoorthy, R.: Two-body abrasive wear characteristics of Nylon clay nanocomposites – effect of grit size, load, and sliding velocity. Mater. Sci. Eng. A. 435, 181–186 (2006)

    Article  Google Scholar 

  156. Peng, Q.-Y., Cong, P.-H., Liu, X.-J., Liu, T.-X., Huang, S., Li, T.-S.: The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear. 266, 713–720 (2009)

    Article  CAS  Google Scholar 

  157. Fan, B., Yang, Y., Feng, C., Ma, J., Tang, Y., Dong, Y., Qi, X.: Tribological properties of fabric self-lubricating liner based on organic montmorillonite (OMMT) reinforced phenolic (PF) nanocomposites as hybrid matrices. Tribol. Lett. 57, 22 (2015)

    Article  Google Scholar 

  158. Landi, G., Sorrentino, A., Fedi, F., Neitzert, H.C., Iannace, S.: Cycle stability and dielectric properties of a new biodegradable energy storage material. Nano Energy. 17, 348–355 (2015). https://doi.org/10.1016/j.nanoen.2015.09.006

    Article  CAS  Google Scholar 

  159. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80). 324, 1312–1314 (2009)

    Article  CAS  Google Scholar 

  160. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    Article  CAS  Google Scholar 

  161. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  162. Landi, G., Fedi, F., Sorrentino, A., Neitzert, H.C., Iannace, S.: Gelatin/graphene systems for low cost energy storage. In: AIP Conference Proceedings, vol. 1599(1), pp. 202–205. AIP Publishing, Naples (2014). https://doi.org/10.1063/1.4876813

  163. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  164. Wei, D., Grande, L., Chundi, V., White, R., Bower, C., Andrew, P., Ryhänen, T.: Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. 48, 1239–1241 (2012)

    Article  CAS  Google Scholar 

  165. Shen, X.-J., Pei, X.-Q., Fu, S.-Y., Friedrich, K.: Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer (Guildf). 54, 1234–1242 (2013)

    Article  CAS  Google Scholar 

  166. Landi, G., Sorrentino, A., Iannace, S., Neitzert, H.C.: Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications. Nanotechnology. 28, 54005 (2016). https://doi.org/10.1088/1361-6528/28/5/054005

    Article  CAS  Google Scholar 

  167. Furio, A., Landi, G., Altavilla, C., Sofia, D., Iannace, S., Sorrentino, A., Neitzert, H.C.: Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films. Nanotechnology. 28, 54003 (2016)

    Article  Google Scholar 

  168. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today. 17, 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  169. Pan, B., Peng, S., Song, S., Chen, J., Liu, J., Liu, H., Zhang, Y., Niu, Q.: The adaptive tribological investigation of polycaprolactam/graphene nanocomposites. Tribol. Lett. 65, 9 (2017)

    Article  Google Scholar 

  170. Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q.: Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 46, 55–63 (2012)

    Article  CAS  Google Scholar 

  171. Min, C., Nie, P., Song, H.-J., Zhang, Z., Zhao, K.: Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 80, 131–140 (2014)

    Article  CAS  Google Scholar 

  172. Pan, B., Xu, G., Zhang, B., Ma, X., Li, H., Zhang, Y.: Preparation and tribological properties of polyamide 11/graphene coatings. Polym. Plast. Technol. Eng. 51, 1163–1166 (2012)

    Article  CAS  Google Scholar 

  173. Huang, T., Xin, Y., Li, T., Nutt, S., Su, C., Chen, H., Liu, P., Lai, Z.: Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl. Mater. Interfaces. 5, 4878–4891 (2013)

    Article  CAS  Google Scholar 

  174. Song, H., Wang, Z., Yang, J., Jia, X., Zhang, Z.: Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem. Eng. J. 324, 51–62 (2017). https://doi.org/10.1016/j.cej.2017.05.016

    Article  CAS  Google Scholar 

  175. Kalin, M., Zalaznik, M., Novak, S.: Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear. 332, 855–862 (2015)

    Article  Google Scholar 

  176. Landi, G., Altavilla, C., Ciambelli, P., Neitzert, H.C., Iannace, S., Sorrentino, A.: Preliminary investigation of polystyrene/MoS2-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics. In: AIP Conference Proceedings, p. 20044. AIP Publishing, Naples (2015). https://doi.org/10.1063/1.4937322

  177. Singer, I.L., Pollock, H.: Fundamentals of Friction: Macroscopic and Microscopic Processes. Springer Netherlands, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2811-7

    Article  Google Scholar 

  178. Balendhran, S., Deng, J., Ou, J.Z., Walia, S., Scott, J., Tang, J., Wang, K.L., Field, M.R., Russo, S., Zhuiykov, S.: Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25, 109–114 (2013)

    Article  CAS  Google Scholar 

  179. Kalantar-Zadeh, K., Tang, J., Wang, M., Wang, K.L., Shailos, A., Galatsis, K., Kojima, R., Strong, V., Lech, A., Wlodarski, W.: Synthesis of nanometre-thick MoO3 sheets. Nanoscale. 2, 429–433 (2010)

    Article  CAS  Google Scholar 

  180. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  181. Kumar, A., Ahluwalia, P.K.: Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B. 85, 186 (2012)

    Article  Google Scholar 

  182. Bissessur, R., Gallant, D., Brüning, R.: Novel nanocomposite material consisting of poly[oxymethylene-(oxyethylene)] and molybdenum disulfide. Mater. Chem. Phys. 82, 316–320 (2003). https://doi.org/10.1016/S0254-0584(03)00310-9

    Article  CAS  Google Scholar 

  183. Bissessur, R., White, W.: Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater. Chem. Phys. 99, 214–219 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.012

    Article  CAS  Google Scholar 

  184. Lin, B.-Z., Ding, C., Xu, B.-H., Chen, Z.-J., Chen, Y.-L.: Preparation and characterization of polythiophene/molybdenum disulfide intercalation material. Mater. Res. Bull. 44, 719–723 (2009). https://doi.org/10.1016/j.materresbull.2008.09.031

    Article  CAS  Google Scholar 

  185. Wang, T., Liu, W., Tian, J., Shao, X., Sun, D.: Structure characterization and conductive performance of polypyrrol-molybdenum disulfide intercalation materials. Polym. Compos. 25, 111–117 (2004). https://doi.org/10.1002/pc.20009

    Article  Google Scholar 

  186. Naffakh, M., Díez-Pascual, A.M., Remškar, M., Marco, C.: New inorganic nanotube polymer nanocomposites: improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INT-MoS2. J. Mater. Chem. 22, 17002 (2012). https://doi.org/10.1039/c2jm33422d

    Article  CAS  Google Scholar 

  187. Basavaraj, E., Ramaraj, B.: Polycarbonate/molybdenum disulfide/carbon black composites: physicomechanical, thermal, wear, and morphological properties. Polym. Compos. 33, 619–628 (2012). https://doi.org/10.1002/pc.22179

    Article  CAS  Google Scholar 

  188. Basavaraj, E., Ramaraj, B.: A study on mechanical, thermal, and wear characteristics of nylon 66/molybdenum disulfide composites reinforced with glass fibers. Polym. Compos. 33, 1570–1577 (2012). https://doi.org/10.1002/pc.22293

    Article  CAS  Google Scholar 

  189. Benavente, E., González, G.: Microwave activated lithium intercalation in transition metal sulfides. Mater. Res. Bull. 32, 709–717 (1997). https://doi.org/10.1016/S0025-5408(97)00037-8

    Article  CAS  Google Scholar 

  190. Najmaei, S., Zou, X., Er, D., Li, J., Jin, Z., Gao, W., Zhang, Q., Park, S., Ge, L., Lei, S., Kono, J., Shenoy, V.B., Yakobson, B.I., George, A., Ajayan, P.M., Lou, J.: Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 14, 1354–1361 (2014). https://doi.org/10.1021/nl404396p

    Article  CAS  Google Scholar 

  191. Divigalpitiya, W.M.R., Morrison, S.R., Frindt, R.F.: Thin oriented films of molybdenum disulphide. Thin Solid Films. 186, 177–192 (1990). https://doi.org/10.1016/0040-6090(90)90511-B

    Article  CAS  Google Scholar 

  192. Zhou, X., Wu, D., Shi, H., Fu, X., Hu, Z., Wang, X., Yan, F.: Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol. Int. 40, 863–868 (2007). https://doi.org/10.1016/j.triboint.2006.09.002

    Article  CAS  Google Scholar 

  193. Altavilla, C., Sarno, M., Ciambelli, P.: A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2 @oleylamine (M═Mo, W). Chem. Mater. 23, 3879–3885 (2011). https://doi.org/10.1021/cm200837g

    Article  CAS  Google Scholar 

  194. Altavilla, C., Ciambelli, P., Sarno, M.: “One-pot” synthesis of 2D, 1D, e 0D nano crystals of tungsten and molybdenum chalcogenides (WS2,MoS2) functionalized with long chain amine and/or carboxylic acid and/or thiol, WO/2012/042511. http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012042511&recNum=3&docAn=IB2011054334&queryString=NONOTUBE*or%22NANOTUBE*%22&maxRec=1363 (2012). Accessed 14 Oct 2014

  195. Altavilla, C., Sarno, M., Ciambelli, P., Senatore, A., Petrone, V.: New “chimie douce” approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology. 24, 125601 (2013). https://doi.org/10.1088/0957-4484/24/12/125601

    Article  CAS  Google Scholar 

  196. Sorrentino, A., Altavilla, C., Merola, M., Senatore, A., Ciambelli, P., Iannace, S.: Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: thermal, tribological, and mechanical properties. Polym. Compos. 36, 1124–1134 (2015)

    Article  CAS  Google Scholar 

  197. Altavilla, C., Fedi, F., Sorrentino, A., Iannace, S., Ciambelli, P.: Polystyrene/MoS2@oleylamine nanocomposites. In: AIP Conference Proceedings, Naples, pp. 194–197 (2014). https://doi.org/10.1063/1.4876811

  198. Hu, K.H., Wang, J., Schraube, S., Xu, Y.F., Hu, X.G., Stengler, R.: Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials. Wear. 266, 1198–1207 (2009)

    Article  CAS  Google Scholar 

  199. Hu, K.H., Schraube, S., Xu, Y.F., Hu, X.G., Stengler, R.: Micro-tribological behavior of polyacetal-based self-lubrication composite materials modified with MoS2. Tribology. 30, 38–45 (2010)

    CAS  Google Scholar 

  200. Hu, K.H., Hu, X.G., Wang, J., Xu, Y.F., Han, C.L.: Tribological properties of MoS2 with different morphologies in high-density polyethylene. Tribol. Lett. 47, 79–90 (2012)

    Article  CAS  Google Scholar 

  201. Wang, J., Hu, K.H., Xu, Y.F., Hu, X.G.: Structural, thermal, and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites. J. Appl. Polym. Sci. 110, 91–96 (2008)

    Article  CAS  Google Scholar 

  202. Yang, J.-F., Parakash, B., Hardell, J., Fang, Q.-F.: Tribological properties of transition metal di-chalcogenide based lubricant coatings. Front. Mater. Sci. 6, 116–127 (2012). https://doi.org/10.1007/s11706-012-0155-7

    Article  Google Scholar 

  203. Xin, Y., Li, T., Gong, D., Xu, F., Wang, M.: Preparation and tribological properties of graphene oxide/nano-MoS2 hybrid as multidimensional assembly used in the polyimide nanocomposites. RSC Adv. 7, 6323–6335 (2017). https://doi.org/10.1039/C6RA27108A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support from the “VINMAC” (INNOVATIVO SISTEMA INTEGRATO DI VENTILAZIONE INDUSTRIALE IN MATERIALI COMPOSITI) project Regione Lombardia POR FESR 2014-2020 ASSE 1 – AZIONE I.1.B.1.3 BANDO LINEA R&S PER AGGREGAZIONI, ID 139455 CUP: E67H16000980009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sorrentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorrentino, A. (2022). Tribology of Self-Lubricating Polymer Nanocomposites. In: Menezes, P.L., Rohatgi, P.K., Omrani, E. (eds) Self-Lubricating Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64243-6_5

Download citation

Publish with us

Policies and ethics