Skip to main content

Hypothalamisch bedingter hypogonadotroper Hypogonadismus

  • Living reference work entry
  • First Online:
Andrologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 55 Accesses

Zusammenfassung

Hypothalamisch und hypophysär bedingte Hodenfunktionsstörungen werden als „hypogonadotroper Hypogonadismus“ bezeichnet. Die hypothalamische GnRH-Insuffizienz und / oder die unzureichende hypophysäre Gonadotropin-Stimulation der Hoden bedingen sowohl eine eingeschränkte Testosteronsekretion, als auch eine inadäquate Spermatogenese.

Angeborene Formen eines hypothalamisch bedingten hypogonadotropen Hypogonadismus können isoliert auftreten (congenitaler hypogonadotroper Hypogonadismus; CHH) oder mit einer Riechstörung vergesellschaftet sein (Kallmann-Syndrom). Selten ist ein CHH mit einer angeborenen primären Nebennierenrinden-Insuffizienz assoziiert oder tritt im Rahmen einer syndromalen Multisystemerkrankung auf.

Erworbene Formen eines hypothalamisch bedingten hypogonadotropen Hypogonadismus können infolge von Tumoren, Traumata, Operationen, Bestrahlungen, Entzündungen oder Ischämien im Bereich der suprasellären Region entstehen.

Darüber hinaus kann ein hypothalamischer hypogonadotroper Hypogonadismus aus einer reversiblen Suppression oder aus einer Herunterregulation der zentralen hypothalamo-hypophysär-gonadalen (HPG)-Achse resultieren. Aufgrund der Reversibilität dieser Störung bei Beseitigung ihrer Ursache werden diese Formen auch als „funktioneller hypogonadotroper Hypogonadismus“ bezeichnet.

Es stehen effektive hormonelle Therapien zur Behandlung des Testosteronmangels und der Infertilität bei hypogonadotropem Hypogonadismus zur Verfügung.

Die genetische Basis des CHH und des Kallmann-Snydroms kann durch Gen-Analysen in bis zu 50 % aller Fälle aufgedeckt werden. Bei den angeborenen Formen des hypothalamischen Hypogonadismus empfiehlt sich eine humangenetische Beratung im Vorfeld therapeutischer Bemühungen um das Erreichen einer biologischen Vaterschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Angulo MA, Butler MG, Cataletto ME (2015) Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest 38:1249–1263

    Article  CAS  Google Scholar 

  • Bedecarrats GY, Kaiser UB (2007) Mutations in the human gonadotropin-releasing hormone receptor: insights into receptor biology and function. Semin Reprod Med 25:368–378

    Article  CAS  Google Scholar 

  • Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202:631–633

    Article  CAS  Google Scholar 

  • Beneduzzi D, Trarbach EB, Min L, Jorge AA, Garmes HM, Renk AC, Fichna M, Fichna P, Arantes KA, Costa EM, Zhang A, Adeola O, Wen J, Carroll RS, Mendonca BB, Kaiser UB, Latronico AC, Silveira LF (2014) Role of gonadotropin-releasing hormone receptor mutations in patients with a wide spectrum of pubertal delay. Fertil Steril 102:838–846.e832

    Article  CAS  Google Scholar 

  • Cangiano B, Swee DS, Quinton R, Bonomi M (2021) Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 140:77–111

    Article  CAS  Google Scholar 

  • Casoni F, Malone SA, Belle M, Luzzati F, Collier F, Allet C, Hrabovszky E, Rasika S, Prevot V, Chedotal A, Giacobini P (2016) Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143:3969–3981

    Article  CAS  Google Scholar 

  • Cicero TJ, Meyer ER, Bell RD, Wiest WG (1974) Effects of morphine on the secondary sex organs and plasma testosterone levels of rats. Res Commun Chem Pathol Pharmacol 7:17–24

    CAS  PubMed  Google Scholar 

  • Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401

    Article  CAS  Google Scholar 

  • Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, Dwyer AA, Buck CL, Choi JH, Seminara SB, Quinton R, Monies D, Meyer B, Hall JE, Pitteloud N, Crowley WF Jr (2013) Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab 98:E943–E953

    Article  Google Scholar 

  • Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 19:125–133

    Article  CAS  Google Scholar 

  • Dhindsa S, Miller MG, McWhirter CL, Mager DE, Ghanim H, Chaudhuri A, Dandona P (2010) Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care 33:1186–1192

    Article  CAS  Google Scholar 

  • Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, Delemarre-van de Waal H, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465

    Article  CAS  Google Scholar 

  • Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175

    Article  Google Scholar 

  • Dwyer A, Raivio T (2015) Comment on reversal of hypogonadotropic hypogonadism in a Chinese cohort. Asian J Androl 17:508

    PubMed  PubMed Central  Google Scholar 

  • Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SH, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831

    Article  CAS  Google Scholar 

  • Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella Persico M, Camerino G, Ballabio A (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536

    Article  CAS  Google Scholar 

  • Fromantin M, Gineste J, Didier A, Rouvier J (1973) Impuberism and hypogonadism at induction into military service. Statistical study. Probl Actuels Endocrinol Nutr 16:179–199

    CAS  PubMed  Google Scholar 

  • Grinspon RP, Ropelato MG, Gottlieb S, Keselman A, Martinez A, Ballerini MG, Domene HM, Rey RA (2010) Basal follicle-stimulating hormone and peak gonadotropin levels after gonadotropin-releasing hormone infusion show high diagnostic accuracy in boys with suspicion of hypogonadotropic hypogonadism. J Clin Endocrinol Metab 95:2811–2818

    Article  CAS  Google Scholar 

  • Habiby RL, Boepple P, Nachtigall L, Sluss PM, Crowley WF Jr, Jameson JL (1996) Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production. J Clin Invest 98:1055–1062

    Article  CAS  Google Scholar 

  • Janssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra RM, van Ravenswaaij-Arts CM, Hoefsloot LH (2012) Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 33:1149–1160

    Article  CAS  Google Scholar 

  • Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S (2016) Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet 90:3–15

    Article  CAS  Google Scholar 

  • Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 83:511–519

    Article  CAS  Google Scholar 

  • Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD (1998) Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 18:14–15

    Article  CAS  Google Scholar 

  • Liu PY, Swerdloff RS, Christenson PD, Handelsman DJ, Wang C, Hormonal Male Contraception Summit G (2006) Rate, extent, and modifiers of spermatogenic recovery after hormonal male contraception: an integrated analysis. Lancet 367:1412–1420

    Article  CAS  Google Scholar 

  • Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J (2018) GENETICS IN ENDOCRINOLOGY: genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 178:R55–R80

    Article  CAS  Google Scholar 

  • Mitchell AL, Dwyer A, Pitteloud N, Quinton R (2011) Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab 22:249–258

    CAS  PubMed  Google Scholar 

  • Nieschlag E, Vorona E (2015) MECHANISMS IN ENDOCRINOLOGY: medical consequences of doping with anabolic androgenic steroids: effects on reproductive functions. Eur J Endocrinol 173:R47–R58

    Article  CAS  Google Scholar 

  • Roux N de, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337:1597–1602

    Google Scholar 

  • Roux N de, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972-10976

    Google Scholar 

  • Seminara SB, Hayes FJ, Crowley WF Jr (1998) Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann’s syndrome): pathophysiological and genetic considerations. Endocr Rev 19:521–539

    CAS  PubMed  Google Scholar 

  • Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  CAS  Google Scholar 

  • Spratt DI, Carr DB, Merriam GR, Scully RE, Rao PN, Crowley WF Jr (1987) The spectrum of abnormal patterns of gonadotropin-releasing hormone secretion in men with idiopathic hypogonadotropic hypogonadism: clinical and laboratory correlations. J Clin Endocrinol Metab 64:283–291

    Article  CAS  Google Scholar 

  • Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–215

    Article  CAS  Google Scholar 

  • Takeda T, Takasu N, Yamauchi K, Komiya I, Ohtsuka H, Nagasawa Y, Ohara N, Yamada T (1992) Magnetic resonance imaging of the hypoplasia of the rhinencephalon in a patient with Kallmann’s syndrome. Intern Med 31:394–396

    Article  CAS  Google Scholar 

  • Tenforde AS, Barrack MT, Nattiv A, Fredericson M (2016) Parallels with the Female Athlete Triad in Male Athletes. Sports Med 46:171–182

    Article  Google Scholar 

  • Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O’Rahilly S, Semple RK (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358

    Article  CAS  Google Scholar 

  • Wabitsch M, Ballauff A, Holl R, Blum WF, Heinze E, Remschmidt H, Hebebrand J (2001) Serum leptin, gonadotropin, and testosterone concentrations in male patients with anorexia nervosa during weight gain. J Clin Endocrinol Metab 86:2982–2988

    Article  CAS  Google Scholar 

  • Waldstreicher J, Seminara SB, Jameson JL, Geyer A, Nachtigall LB, Boepple PA, Holmes LB, Crowley WF Jr (1996) The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. J Clin Endocrinol Metab 81:4388–4395

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Rohayem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rohayem, J., Tüttelmann, F., Nieschlag, E., Behre, H.M. (2022). Hypothalamisch bedingter hypogonadotroper Hypogonadismus. In: Nieschlag, E., Behre, H.M., Kliesch, S., Nieschlag, S. (eds) Andrologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61904-9_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61904-9_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61904-9

  • Online ISBN: 978-3-662-61904-9

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics