Skip to main content

Risiken der pflanzlichen Gentechnik

  • Chapter
  • First Online:
Gentechnik bei Pflanzen
  • 5505 Accesses

Zusammenfassung

Während gentechnisch hergestellte Medikamente oder Enzyme akzeptiert werden, bleiben transgene Pflanzen ist vor allem in Europa sehr umstritten und treffen auf breite Ablehnung, obwohl die wissenschaftliche Betrachtung ganz anders ausfällt: Gentechnische Pflanzen werden hinsichtlich ihrer Risiken ähnlich wie konventionelle Pflanzen eingestuft. In diesem Kapitel werden alle wesentlichen sicherheitsrelevanten Aspekte behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

  • Ammann K (2014) Molecular differences between GM- and non-G crops overestimated? PRRI (Public Research & Regulation Initiative) Ask Force-10-2010514. http://www.prri.net/wp-content/uploads/2011/12/AF-9-Differences-GM-non-GM-crops-20100423-web.pdf

  • Bartsch D, Devos Y, Hails R, Kiss J, Krogh PH, Mestdagh S, Nuti M, Sessitsch A, Sweet J, Gathmann A (2011) Environmental impact of genetically modified maize expressing Cry1 protein. In: Kempken F, Jung C (Hrsg) Genetic modification of plants – agriculture, horticulture and forestry. Springer, Berlin, S 575–614

    Google Scholar 

  • Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380

    Article  CAS  Google Scholar 

  • Benbrook (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3. https://doi.org/10.1186/s12302-016-0070-0

  • Brookes G, Barfoot P (2004) GM crops: the global economic and environmental impact. The first nine years 1996–2004. J Agro Biotechnol Manag Econ 8,15 AgBioForum. http://www.agbioforum.org

  • Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27:25–49

    Article  CAS  Google Scholar 

  • Colquhoun IJ, LeGall G, Elliot KA, Mellon FA, Michael AJ (2006) Shall I compare thee to a GM potato? Trends Genet 22:525–528

    Article  CAS  Google Scholar 

  • Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of Bacillus thuringensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53:4643–4653

    Article  CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II: overview of ecological risk assessment. Plant J 33:19–46

    Article  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotech 20:567–574

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotech 20:581–586

    Article  CAS  Google Scholar 

  • Delaney B, Goodman RE, Ladics GS (2018) Food and feed safety of genetically engineered food crops. Tox Sci 162:361–371

    Article  CAS  Google Scholar 

  • Eschenbach C, Rinker A, Windhorst D, Windhorst W (2008) Cause effect chains on potential GMO cropping in Schleswig Holstein. In: Brechling B, Reuter H, Verhoeven R (Hrsg) Implications of GM-crop cultivation at large spatial scales. Theorie in der Ökologie 14. Lang, Frankfurt, S 51–55

    Google Scholar 

  • Gampala SS, Wulfkuhle B, Richey KA (2019) Detection of transgenic proteins by immunoassays. Methods Mol Biol 1864:411–417. https://doi.org/10.1007/978-1-4939-8778-8_25

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DA (2014) Tempest in a tea pot: how did the public conversation on genetically modified crops drift so far from the facts? J Med Toxicol 10:194–201

    Article  Google Scholar 

  • Goodman RE, Vieths S, Sampson H, Hill D, Ebisawa M, Taylor SL, van Ree R (2008) Allergenicity assessment of genetically modified crops – what makes sense? Nat Biotechnol 26:73–81

    Article  CAS  Google Scholar 

  • Goy PA, Duesing JH (1995) From pots to plots: genetically modified plants on trial. Biotechnol 13:454–458

    CAS  Google Scholar 

  • https://geneticliteracyproject.org/2017/06/19/gmo-20-year-safety-endorsement-280-science-institutions-more-3000-studies/

  • Johnson KL, Raybould AF, Hudson MD, Poppy GM (2006) How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci 12:1–5

    Article  Google Scholar 

  • Mackenzie D (1999) Red flag for a green spray. New Sci 2188:4

    Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  CAS  Google Scholar 

  • Momma K, Hashimoto W, Ozawa S et al (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: analysis of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63:314–318

    Article  CAS  Google Scholar 

  • Nap JP, Metz PLJ, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J 33:1–18

    Article  Google Scholar 

  • National Research Council (U.S.) (2004) Committee on identifying and assessing unintended effects of genetically engineered foods on human health. National Acadamies Press, Washington DC. http://www.nap.edu/openbook.php?record_id=10977&page=R1

  • Nawaz MA, Mesnage R, Tsatsakis AM, Golokhvast KS, Yang SH, Antoniou MN, Chung G (2019) Addressing concerns over the fate of DNA derived from genetically modified food in the human body: a review. Food Chem Toxicol 124:423–430. https://doi.org/10.1016/j.fct.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  • Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88. https://doi.org/10.3109/07388551.2013.823595

    Article  CAS  PubMed  Google Scholar 

  • Owen MD (2011) Herbicide resistance. In: Kempken F, Jung C (Hrsg) Genetic modification of plants – agriculture, horticulture and forestry. Springer, Berlin, S 159–176

    Google Scholar 

  • Owen MD, Young BG, Shaw DR, Wilson RG, Jordan DL, Dixon PM, Weller SC (2011) Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives. Pest Manag Sci 67:747–757

    Article  CAS  Google Scholar 

  • Pan X (2019) Determining pollen-mediated gene flow in transgenic cotton. Methods Mol Biol 1902:309–321. https://doi.org/10.1007/978-1-4939-8952-2_25

    Article  CAS  PubMed  Google Scholar 

  • Perry ED, Ciliberto F, Hennessy DA, Moschini G (2016) Genetically engineered crops and pesticide use in U.S. maize and soybeans. Sci Adv 2:e1600850

    Google Scholar 

  • Pfeilstetter E, Matzk A, Schiemann J, Feldmann SD (1998) Untersuchungen zum Auskreuzverhalten von Liberty-tolerantem Winterraps auf nicht-transgenen Raps. In: Schiemann J (Hrsg) Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen. BEO, Braunschweig, pp l75–184

    Google Scholar 

  • Pilcher CD, Obrycki JJ, Rice ME, Lewis LC (1997) Premaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringensis com. Environ Entomol 26:446–454

    Article  Google Scholar 

  • Prescott VE, Campbell PM, Moore A et al (2005) Transgenic expression of bean a-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    Article  CAS  Google Scholar 

  • Ricroch A, Bergé JB, Kuntz M (2010) Is the German suspension of MON810 maize cultivation scientifically justified? Transgenic Res 19:1–12

    Article  CAS  Google Scholar 

  • Ricroch AE, Berge JB, Kuntz M (2011) Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol 155:1752–1761

    Article  CAS  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480

    Article  CAS  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Tibtech 17:210–216

    Article  CAS  Google Scholar 

  • Selb R, Wal JM, Lovik M, Mills C, Hoffmann-Sommergruber K, Fernandez A (2017) Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean – where do we stand? Food Chem Toxicol 101:139–148

    Article  CAS  Google Scholar 

  • Shaw DR, Owen MD, Dixon PM, Weller SC, Young BG, Wilson RG, Jordan DL (2011) Benchmark study on glyphosate-resistant cropping systems in the United States. Part 1: introduction to 2006–2008. Pest Manag Sci 67:741–746

    Article  CAS  Google Scholar 

  • Shelton AM, Roush RT (1999) False reports and the ears of men. Nat Biotechnol 17:832–219

    Article  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  CAS  Google Scholar 

  • Snell C, Bernheim A, Berge JB, Kuntz M, Pascal G, Paris A, Ricroch AE (2012) Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol 50:1134–1146

    Article  CAS  Google Scholar 

  • Syvanen M (1999) In search of horizontal gene transfer. Nat Biotechnol 17:833

    Article  CAS  Google Scholar 

  • Thaca NY, Jorgensen RB, Hauser T, Mikkelsen TR, Ästergärd H (1996) Transfer of engineered genes from crop to wild plants. Trends Plant Sci 1:356–358

    Article  Google Scholar 

  • Trewavas A (1999) Gene flow and GM questions. Trends Plant Sci 4:339

    Article  CAS  Google Scholar 

  • Wackernagel W, Blum S, Meier P, Meier P (1998) DNA-Entlassung aus transgenen Zuckerrüben während der Vegetations- und Überwinterungsphase und horizontaler Gentransfer im Boden. In: Schiemann (Hrsg) Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen. BEO, Braunschweig, S 111–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kempken .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kempken, F. (2020). Risiken der pflanzlichen Gentechnik. In: Gentechnik bei Pflanzen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60744-2_7

Download citation

Publish with us

Policies and ethics