Skip to main content

Kohlenstoffkreislauf

  • Chapter
  • First Online:
Umweltmikrobiologie

Zusammenfassung

Die Zusammensetzung der heutigen Erdatmosphäre geht auf biologische Prozesse im Verlauf der Erdgeschichte zurück. Die Uratmosphäre enthielt vor vier Milliarden Jahren vor allem Wasser, CO2 und reduzierte Verbindungen. Wahrscheinlich wurden CH4, H2 und H2S durch die Vorfahren der Archaea, deren Entstehung vor etwa 3,8 Mrd. Jahren angenommen wird, assimiliert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Brunner, B., Contreras, S., Lehmann, M. F., Matantseva, O., Rollog, M., Kalvelage, T., Klockgether, G., Lavik, G., Jetten, M. S., Kartal, B., Kuypers, M. M. 2013. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. USA 110:18994–18999. https://doi.org/10.1073/pnas.1310488110.

    Article  CAS  PubMed  Google Scholar 

  • Cicerone, R. J., Oremland, R. S. 1988. Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycle 2:299–327.

    Article  CAS  Google Scholar 

  • Deutzmann, J. S., Stief, P., Brandes, J., Schink, B. 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc. Natl. Acad. Sci. USA 111:18273–18278. https://doi.org/10.1073/pnas.1411617111.

    Article  CAS  PubMed  Google Scholar 

  • Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S., Röckmann, T., van der Veen, C., Banda, N., Kartal, B., Ettwig, K. F., Slomp, C. S. 2015. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49:277–283. https://doi.org/10.1021/es503663z.

    Article  CAS  PubMed  Google Scholar 

  • Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J., Janssen-Megens, E. M., Francoijs, K. J., Stunnenberg, H., Weissenbach, J., Jetten, M. S., Strous, M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548.

    Article  CAS  PubMed  Google Scholar 

  • Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., Kartal, B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl. Acad. Sci. USA 113:12792–12796. https://doi.org/10.1073/pnas.1609534113.

    Article  CAS  PubMed  Google Scholar 

  • Holler, T., Wegener, G., Niemann, H., Deusner, C., Ferdelman, T. G., Boetius, A., Brunner, B., Widdel, F. 2011. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl. Acad. Sci. USA 108:E1484–1490. https://doi.org/10.1073/pnas.1106032108. Erratum in Proc. Natl. Acad. Sci. USA 109:21170.

    Article  PubMed  Google Scholar 

  • Hu, B. L., Shen, L. D., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z. F., Geng, S., Cheng, D. Q., Lou, L. P., Xu, X. Y., Zheng, P., He, Y. F. 2014. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc. Natl. Acad. Sci. USA 111:4495–4500. https://doi.org/10.1073/pnas.1318393111.

    Article  CAS  PubMed  Google Scholar 

  • Knittel, K., Lösekann, T., Boetius, A., Kort, R., Amann, R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71:467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leak, D. J, Dalton, H. 1986. Growth yields of methanotrophs. Appl. Microbiol. Biotechnol. 23:470–476.

    Article  CAS  Google Scholar 

  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J., Ettwig, K. F., Rijpstra, W. I., Schouten, S., Damste, J. S., Op den Camp, H. J., Jetten, M. S., Strous, M. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921.

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh, W. S. 1996. “Soft spots” in the global methane budget. In: Microbial Growth on C-1 Compounds; Lidstrom, M. E., Tabita, F. R. (eds), Kluwer Academic Publishers: Dordrecht, pp. 335–342.

    Chapter  Google Scholar 

  • Reeburgh, W. S. 2007. Oceanic methane biogeochemistry. Chem. Rev. 107:486–513.

    Article  CAS  PubMed  Google Scholar 

  • Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., Kasten, S. 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181. https://doi.org/10.1111/gbi.12077.

    Article  CAS  PubMed  Google Scholar 

  • Shen, L. D., Hu, B. L., Liu, S., Chai, X. P., He, Z. F., Ren, H. X., Liu, Y., Geng, S., Wang, W., Tang, J. L., Wang, Y. M., Lou, L. P., Xu, X. Y., Zheng, P. 2016. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Appl. Microbiol. Biotechnol. 100:7171–7180. https://doi.org/10.1007/s00253-016-7627-0.

    Article  CAS  PubMed  Google Scholar 

  • Shen, L. D., Liu, S., Huang, Q., Lian, X., He, Z. F., Geng, S., Jin, R. C., He, Y. F., Lou, L. P., Xu, X. Y., Zheng, P., Hu, B. L. 2014. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Appl. Environ. Microbiol. 80:7611–7619. https://doi.org/10.1128/aem.02379-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson, I. J., Blake, D. R., Rowland, F. S., Chen, T.-Y. 2002. Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophys. Res. Lett. 29:117-1–117-4.

    Article  CAS  Google Scholar 

  • Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J., Orphan, V. J. 2014. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc. Natl. Acad. Sci. USA 111:E4139–4147. https://doi.org/10.1073/pnas.1412269111.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D. L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Ant. van Leeuwenhoek 81:271–282.

    Article  CAS  Google Scholar 

  • Wankel, S. D., Adams, M. M., Johnston, D. T., Hansel, C. M., Joye, S. B., Girguis, P. R. 2012. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ. Microbiol. 14:2726–2740. https://doi.org/10.1111/j.1462-2920.2012.02825.x.

    Article  CAS  PubMed  Google Scholar 

  • Welte, C. U., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op den Camp, H. J., Jetten, M. S., Lüke, C., Reimann, J. 2016. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol. Rep. 2016 Oct 18. https://doi.org/10.1111/1758-2229.12487.

    Article  CAS  PubMed  Google Scholar 

Weiterführende Literatur

  • Amos, R. T., Bekins, B. A., Cozzarelli, I. M., Voytek, M. A., Kirshtein, J. D., Jones, E. J., Blowes, D. W. 2012. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10:506–517.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, E. A., Shoham, Y., Lamed, R. 2001. Cellulose-decomposing bacteria and their enzyme systems. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds) The Prokaryotes, electronic edition, release November 2001. Springer, New York.

    Google Scholar 

  • Beal, E. J., House, C. H., Orphan, V. J. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184–187.

    Article  CAS  PubMed  Google Scholar 

  • Berg, I. A., Kockelkorn, D., Ramos-Vera, W., H. Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., Fuchs, G. 2010. Autotrophic carbon fixation in archaea. Nature Rev. Microbiol. 8:447–460.

    Article  CAS  PubMed  Google Scholar 

  • Berg, I. A. 2011. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77:1925–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, I. A. 2012. Citratzyklus in Cyanobakterien: geschlossen, aber noch nicht verstanden. BIOSpektrum 18:179.

    Google Scholar 

  • Berg, J. M., Tymoczko, J. L., Stryer, L. 2007. Biochemie. 6. Auflage. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jörgensen, B. B., Witte, U., Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626.

    Article  CAS  PubMed  Google Scholar 

  • Boyle, N. R., Morgan, J. A. 2011. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab. Eng. 13:150–158.

    Article  CAS  PubMed  Google Scholar 

  • Callaghan, A. V. 2013. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Frontiers in Microbiol. 14 May 2013| https://doi.org/10.3389/fmicb.2013.00089.

  • Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M. A., Kessler, J. D., Reeburgh, W. S., Roberts, J. A., González, L., Douglas Haffner, G., Mucci, A., Sundby, B., Fowle, D. A. 2011. The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78.

    Article  CAS  PubMed  Google Scholar 

  • Drake, H. L., Küsel, K., Matthies, C. 2004. Acetogenic Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds) The Prokaryotes, electronic edition, release 2004. Springer, New York.

    Google Scholar 

  • Fritsche, W. 2002. Mikrobiologie. 3. Aufl., Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Fuchs, G. (Hrsg.) 2006. Allgemeine Mikrobiologie. 8. Auflage. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Fuchs, G. 2011. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annu. Rev. Microbiol. 65:631–658.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk, G. 1988. Bacterial metabolism. 2.ed., Springer, New York.

    Google Scholar 

  • Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G. W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570.

    Article  CAS  PubMed  Google Scholar 

  • Hatakka, A. 2001. Biodegradation of lignin. In: Biopolymers. Volume 1: Lignin, humic substances and coal (Hofrichter, M., Steinbüchel, A., eds.) Wiley-VCH, Weinheim. S. 129–180.

    Google Scholar 

  • Hügler, M., Sievert, S. M. 2011. Beyond the Calvin Cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3:261–289.

    Article  Google Scholar 

  • Knittel, K., Boetius, A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 63:311–334.

    Article  CAS  PubMed  Google Scholar 

  • Lengeler, J. W., Drews, G., Schlegel, H. G. 1999. Biology of the Prokaryotes. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Lidstrom, M. E. 2001. Aerobic methylotrophic prokaryote. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds) The Prokaryotes, electronic edition, release November 2001. Springer, New York.

    Google Scholar 

  • Madigan, M. T., Martinko, J. M., Dunlap, P. V., Clark, D. P. 2009. Brock-Biology of Microorganisms. 12th International Edition. Pearson Benjamin Cummings, San Francisco, CA94111.

    Google Scholar 

  • Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V. Gulin, M. B. 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015.

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulfate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4:296–305.

    Article  CAS  PubMed  Google Scholar 

  • Oremland, R. S. 2010. Biogeochemistry: NO connection with methane. Nature 464:500–501.

    Article  CAS  PubMed  Google Scholar 

  • Reineke, W. 2001. Aerobic and anaerobic biodegradation potentials of microorganisms. In: The Handbook of Environmental Chemistry (O. Hutzinger, ed.) Vol. 2K The Natural Environment and Biogeochemical Cycles (Volume editor: B. Beek), Springer Verlag, Berlin, pp. 1–161.

    Google Scholar 

  • Report of the Methane Hydrate Advisory Committee. 2002. Methane Hydrate Issues and Opportunities. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/pdf/CongressReport.pdf.

  • Schmitz, R. A., Daniel, R., Deppenmeier, U. Gottschalk, G. 2001. The Anaerobic Way of Life. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds) The Prokaryotes, electronic edition, release Spring 2001. Springer, New York.

    Google Scholar 

  • Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W. 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56:1536–1544.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Shima, S. 2008. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci. 1125:158–170.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D. L., Reeburgh, W. S. 2000. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2:477–484.

    Article  CAS  PubMed  Google Scholar 

  • Wakeham, S. G., Hopmans, E. C., Schouten, S., Sinninghe Damsté, J. S. 2004. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns. A comparative study of the Black Sea and Cariaco Basin. Chem. Geology 205:427–442.

    Article  CAS  Google Scholar 

  • Widdel, F. 2002. Mikroorganismen des Meeres – Katalysatoren globaler Stoffkreisläufe. In: Bedeutung der Mikroorganismen für die Umwelt: Rundgespräch der Kommission für Ökologie, Bayerische Akademie der Wissenschaften. Verlag Dr. Friedrich Pfeil. Band 23, S. 67–82.

    Google Scholar 

  • Widdel, F., Boetius, A., Rabus, R. 2004. Anaerobic biodegradation of hydrocarbons including methane. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds) The Prokaryotes, electronic edition, release Spring 2004. Springer, New York.

    Google Scholar 

  • Zehnder, A. J. B. 1988. Biology of anaerobic microorganisms. John Wiley & Sons., New York.

    Google Scholar 

  • Zhang, S., Bryant, D. A. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Van Dijk, G., Fritz, C., Smolders, A. J., Pol, A., Jetten, M. S., Ettwig, K. F. 2012. Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl. Environ. Microbiol. 78:8657–8665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Reineke .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reineke, W., Schlömann, M. (2020). Kohlenstoffkreislauf. In: Umweltmikrobiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59655-5_4

Download citation

Publish with us

Policies and ethics