Skip to main content

Healing of the Rotator Cuff Tendon

  • Chapter
Rotator Cuff Across the Life Span

Abstract

Rotator cuff injuries are one of the most common musculoskeletal complaints and affect a significant number of patients, particularly in the aging population. Rotator cuff tears are present in approximately 13% of patients in their 50s, 25% of patients in their 60s, and 50% of patients in their 80s (Tempelhof et al., J Shoulder Elbow Surg 8(4):296–299, 1999). Surgical treatment with rotator cuff repair is often indicated after failure of conservative treatment in patients with symptomatic rotator cuff tears, but a high rate of failure of healing has been reported in the literature (Galatz et al., J Bone Joint Surg Am 86-A(2):219–224, 2004; Miller et al., Am J Sports Med 39(10):2064–2070, 2011). While patients may improve after surgery even with recurrent rotator cuff tears in regard to decreased pain and increased function, the durability of outcomes after re-tear can be limited (Galatz et al., J Bone Joint Surg Am 86-A(2):219–224, 2004), and there is literature to suggest that an intact repair results in superior clinical outcomes (Miller et al., Am J Sports Med 39(10):2064–2070, 2011; Franceschi et al., Am J Sports Med 35(8):1254–1260, 2007; Harryman et al., J Bone Joint Surg Am 73(7):982–989, 1991; Nho et al., Am J Sports Med 37(10):1938–1945, 2009; Gazielly et al., Clin Orthop Relat Res (304):43–53, 1994; Zumstein et al., J Bone Joint Surg Am 90(11):2423–2431, 2008; Wylie et al., Orthop J Sports Med 6(1):2325967117750104, 2018). Tendon-to-bone healing in rotator cuff repair is a multifactorial process that is affected by patient-specific characteristics, intraoperative factors, and postoperative management. This chapter will discuss the normal rotator cuff tendon anatomy and healing response to injury, as well as the various factors that affect rotator cuff tendon healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elbow Surg. 1999;8(4):296–9.

    CAS  PubMed  Google Scholar 

  2. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.

    Google Scholar 

  3. Miller BS, Downie BK, Kohen RB, et al. When do rotator cuff repairs fail? Serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears. Am J Sports Med. 2011;39(10):2064–70.

    PubMed  Google Scholar 

  4. Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med. 2007;35(8):1254–60.

    PubMed  Google Scholar 

  5. Harryman DT 2nd, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA 3rd. Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73(7):982–9.

    PubMed  Google Scholar 

  6. Nho SJ, Adler RS, Tomlinson DP, et al. Arthroscopic rotator cuff repair: prospective evaluation with sequential ultrasonography. Am J Sports Med. 2009;37(10):1938–45.

    PubMed  Google Scholar 

  7. Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res. 1994;304:43–53.

    Google Scholar 

  8. Zumstein MA, Jost B, Hempel J, Hodler J, Gerber C. The clinical and structural long-term results of open repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2008;90(11):2423–31.

    PubMed  Google Scholar 

  9. Wylie JD, Baran S, Granger EK, Tashjian RZ. A comprehensive evaluation of factors affecting healing, range of motion, strength, and patient-reported outcomes after arthroscopic rotator cuff repair. Orthop J Sports Med. 2018;6(1):2325967117750104.

    PubMed  PubMed Central  Google Scholar 

  10. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat. 1998;193(Pt 4):481–94.

    PubMed  PubMed Central  Google Scholar 

  11. Apostolakos J, Durant TJ, Dwyer CR, et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 2014;4(3):333–42.

    PubMed  PubMed Central  Google Scholar 

  12. Galatz LM, Sandell LJ, Rothermich SY, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res. 2006;24(3):541–50.

    CAS  PubMed  Google Scholar 

  13. Iannotti JP, Deutsch A, Green A, et al. Time to failure after rotator cuff repair: a prospective imaging study. J Bone Joint Surg Am. 2013;95(11):965–71.

    PubMed  Google Scholar 

  14. Khazzam M, Kuhn JE, Mulligan E, et al. Magnetic resonance imaging identification of rotator cuff retears after repair: interobserver and intraobserver agreement. Am J Sports Med. 2012;40(8):1722–7.

    PubMed  Google Scholar 

  15. Gamradt SC, Gallo RA, Adler RS, et al. Vascularity of the supraspinatus tendon three months after repair: characterization using contrast-enhanced ultrasound. J Shoulder Elbow Surg. 2010;19(1):73–80.

    PubMed  Google Scholar 

  16. Park JS, Park HJ, Kim SH, Oh JH. Prognostic factors affecting rotator cuff healing after arthroscopic repair in small to medium-sized tears. Am J Sports Med. 2015;43(10):2386–92.

    PubMed  Google Scholar 

  17. Oh JH, Kim SH, Kang JY, Oh CH, Gong HS. Effect of age on functional and structural outcome after rotator cuff repair. Am J Sports Med. 2010;38(4):672–8.

    PubMed  Google Scholar 

  18. Chung SW, Oh JH, Gong HS, Kim JY, Kim SH. Factors affecting rotator cuff healing after arthroscopic repair: osteoporosis as one of the independent risk factors. Am J Sports Med. 2011;39(10):2099–107.

    PubMed  Google Scholar 

  19. Verma NN, Bhatia S, Baker CL 3rd, et al. Outcomes of arthroscopic rotator cuff repair in patients aged 70 years or older. Arthroscopy. 2010;26(10):1273–80.

    PubMed  Google Scholar 

  20. Worland RL, Arredondo J, Angles F, Lopez-Jimenez F. Repair of massive rotator cuff tears in patients older than 70 years. J Shoulder Elbow Surg. 1999;8(1):26–30.

    CAS  PubMed  Google Scholar 

  21. Rhee YG, Cho NS, Yoo JH. Clinical outcome and repair integrity after rotator cuff repair in patients older than 70 years versus patients younger than 70 years. Arthroscopy. 2014;30(5):546–54.

    PubMed  Google Scholar 

  22. Diebold G, Lam P, Walton J, Murrell GAC. Relationship between age and rotator cuff retear: a study of 1,600 consecutive rotator cuff repairs. J Bone Joint Surg Am. 2017;99(14):1198–205.

    PubMed  Google Scholar 

  23. Galatz LM, Silva MJ, Rothermich SY, Zaegel MA, Havlioglu N, Thomopoulos S. Nicotine delays tendon-to-bone healing in a rat shoulder model. J Bone Joint Surg Am. 2006;88(9):2027–34.

    CAS  PubMed  Google Scholar 

  24. Lundgreen K, Lian OB, Scott A, Nassab P, Fearon A, Engebretsen L. Rotator cuff tear degeneration and cell apoptosis in smokers versus nonsmokers. Arthroscopy. 2014;30(8):936–41.

    PubMed  PubMed Central  Google Scholar 

  25. Santiago-Torres J, Flanigan DC, Butler RB, Bishop JY. The effect of smoking on rotator cuff and glenoid labrum surgery: a systematic review. Am J Sports Med. 2015;43(3):745–51.

    PubMed  Google Scholar 

  26. Bedi A, Fox AJ, Harris PE, et al. Diabetes mellitus impairs tendon-bone healing after rotator cuff repair. J Shoulder Elbow Surg. 2010;19(7):978–88.

    PubMed  PubMed Central  Google Scholar 

  27. Chung SW, Choi BM, Kim JY, et al. Altered gene and protein expressions in torn rotator cuff tendon tissues in diabetic patients. Arthroscopy. 2017;33(3):518–26.. e511

    PubMed  Google Scholar 

  28. Clement ND, Hallett A, MacDonald D, Howie C, McBirnie J. Does diabetes affect outcome after arthroscopic repair of the rotator cuff? J Bone Joint Surg Br. 2010;92(8):1112–7.

    CAS  PubMed  Google Scholar 

  29. Chen AL, Shapiro JA, Ahn AK, Zuckerman JD, Cuomo F. Rotator cuff repair in patients with type I diabetes mellitus. J Shoulder Elbow Surg. 2003;12(5):416–21.

    PubMed  Google Scholar 

  30. Cho NS, Moon SC, Jeon JW, Rhee YG. The influence of diabetes mellitus on clinical and structural outcomes after arthroscopic rotator cuff repair. Am J Sports Med. 2015;43(4):991–7.

    PubMed  Google Scholar 

  31. Kim YK, Jung KH, Kim JW, Kim US, Hwang DH. Factors affecting rotator cuff integrity after arthroscopic repair for medium-sized or larger cuff tears: a retrospective cohort study. J Shoulder Elbow Surg. 2018;27(6):1012–20.

    PubMed  Google Scholar 

  32. Beason DP, Tucker JJ, Lee CS, Edelstein L, Abboud JA, Soslowsky LJ. Rat rotator cuff tendon-to-bone healing properties are adversely affected by hypercholesterolemia. J Shoulder Elbow Surg. 2014;23(6):867–72.

    PubMed  Google Scholar 

  33. Cancienne JM, Brockmeier SF, Rodeo SA, Werner BC. Perioperative serum lipid status and statin use affect the revision surgery rate after arthroscopic rotator cuff repair. Am J Sports Med. 2017;45(13):2948–54.

    PubMed  Google Scholar 

  34. Angeline ME, Ma R, Pascual-Garrido C, et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am J Sports Med. 2014;42(1):27–34.

    PubMed  Google Scholar 

  35. Ryu KJ, Kim BH, Lee Y, Dan J, Kim JH. Low serum vitamin D is not correlated with the severity of a rotator cuff tear or retear after arthroscopic repair. Am J Sports Med. 2015;43(7):1743–50.

    PubMed  Google Scholar 

  36. Cho NS, Rhee YG. The factors affecting the clinical outcome and integrity of arthroscopically repaired rotator cuff tears of the shoulder. Clin Orthop Surg. 2009;1(2):96–104.

    PubMed  PubMed Central  Google Scholar 

  37. Charousset C, Bellaiche L, Kalra K, Petrover D. Arthroscopic repair of full-thickness rotator cuff tears: is there tendon healing in patients aged 65 years or older? Arthroscopy. 2010;26(3):302–9.

    PubMed  Google Scholar 

  38. Tan M, Lam PH, Le BT, Murrell GA. Trauma versus no trauma: an analysis of the effect of tear mechanism on tendon healing in 1300 consecutive patients after arthroscopic rotator cuff repair. J Shoulder Elbow Surg. 2016;25(1):12–21.

    CAS  PubMed  Google Scholar 

  39. Mihata T, Watanabe C, Fukunishi K, et al. Functional and structural outcomes of single-row versus double-row versus combined double-row and suture-bridge repair for rotator cuff tears. Am J Sports Med. 2011;39(10):2091–8.

    PubMed  Google Scholar 

  40. Nho SJ, Shindle MK, Adler RS, Warren RF, Altchek DW, MacGillivray JD. Prospective analysis of arthroscopic rotator cuff repair: subgroup analysis. J Shoulder Elbow Surg. 2009;18(5):697–704.

    PubMed  Google Scholar 

  41. Tashjian RZ, Hollins AM, Kim HM, et al. Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med. 2010;38(12):2435–42.

    PubMed  Google Scholar 

  42. Milano G, Saccomanno MF, Careri S, Taccardo G, De Vitis R, Fabbriciani C. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study. Arthroscopy. 2013;29(5):802–10.

    PubMed  Google Scholar 

  43. Chung SW, Kim JY, Kim MH, Kim SH, Oh JH. Arthroscopic repair of massive rotator cuff tears: outcome and analysis of factors associated with healing failure or poor postoperative function. Am J Sports Med. 2013;41(7):1674–83.

    PubMed  Google Scholar 

  44. Chung SW, Kim JY, Yoon JP, Lyu SH, Rhee SM, Oh SB. Arthroscopic repair of partial-thickness and small full-thickness rotator cuff tears: tendon quality as a prognostic factor for repair integrity. Am J Sports Med. 2015;43(3):588–96.

    PubMed  Google Scholar 

  45. Sethi PM, Sheth CD, Pauzenberger L, et al. Macroscopic rotator cuff tendinopathy and histopathology do not predict repair outcomes of rotator cuff tears. Am J Sports Med. 2018;46(4):779–85.

    PubMed  Google Scholar 

  46. Barnes LA, Kim HM, Caldwell JM, et al. Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair. Bone Joint J. 2017;99-B(2):245–9.

    PubMed  Google Scholar 

  47. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg. 2006;15(3):290–9.

    PubMed  Google Scholar 

  48. Nho SJ, Shindle MK, Sherman SL, Freedman KB, Lyman S, MacGillivray JD. Systematic review of arthroscopic rotator cuff repair and mini-open rotator cuff repair. J Bone Joint Surg Am. 2007;89(Suppl 3):127–36.

    PubMed  Google Scholar 

  49. Lindley K, Jones GL. Outcomes of arthroscopic versus open rotator cuff repair: a systematic review of the literature. Am J Orthop (Belle Mead NJ). 2010;39(12):592–600.

    Google Scholar 

  50. Liem D, Bartl C, Lichtenberg S, Magosch P, Habermeyer P. Clinical outcome and tendon integrity of arthroscopic versus mini-open supraspinatus tendon repair: a magnetic resonance imaging-controlled matched-pair analysis. Arthroscopy. 2007;23(5):514–21.

    PubMed  Google Scholar 

  51. Gartsman GM, Drake G, Edwards TB, et al. Ultrasound evaluation of arthroscopic full-thickness supraspinatus rotator cuff repair: single-row versus double-row suture bridge (transosseous equivalent) fixation. Results of a prospective, randomized study. J Shoulder Elbow Surg. 2013;22(11):1480–7.

    PubMed  Google Scholar 

  52. Hantes ME, Ono Y, Raoulis VA, et al. Arthroscopic single-row versus double-row suture bridge technique for rotator cuff tears in patients younger than 55 years: a prospective comparative study. Am J Sports Med. 2018;46(1):116–21.

    PubMed  Google Scholar 

  53. Montanez A, Makarewich CA, Burks RT, Henninger HB. The medial stitch in Transosseous-equivalent rotator cuff repair: vertical or horizontal mattress? Am J Sports Med. 2016;44(9):2225–30.

    PubMed  Google Scholar 

  54. Lapner PL, Sabri E, Rakhra K, et al. A multicenter randomized controlled trial comparing single-row with double-row fixation in arthroscopic rotator cuff repair. J Bone Joint Surg Am. 2012;94(14):1249–57.

    PubMed  Google Scholar 

  55. Nho SJ, Slabaugh MA, Seroyer ST, et al. Does the literature support double-row suture anchor fixation for arthroscopic rotator cuff repair? A systematic review comparing double-row and single-row suture anchor configuration. Arthroscopy. 2009;25(11):1319–28.

    PubMed  Google Scholar 

  56. DeHaan AM, Axelrad TW, Kaye E, Silvestri L, Puskas B, Foster TE. Does double-row rotator cuff repair improve functional outcome of patients compared with single-row technique? A systematic review. Am J Sports Med. 2012;40(5):1176–85.

    PubMed  Google Scholar 

  57. Kim DH, Jang YH, Choi YE, Lee HR, Kim SH. Evaluation of repair tension in arthroscopic rotator cuff repair: does it really matter to the integrity of the rotator cuff? Am J Sports Med. 2016;44(11):2807–12.

    PubMed  Google Scholar 

  58. Park JS, McGarry MH, Campbell ST, et al. The optimum tension for bridging sutures in transosseous-equivalent rotator cuff repair: a cadaveric biomechanical study. Am J Sports Med. 2015;43(9):2118–25.

    PubMed  Google Scholar 

  59. St Pierre P, Olson EJ, Elliott JJ, O’Hair KC, McKinney LA, Ryan J. Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in goats. J Bone Joint Surg Am. 1995;77(12):1858–66.

    CAS  PubMed  Google Scholar 

  60. Bilsel K, Yildiz F, Kapicioglu M, et al. Efficacy of bone marrow-stimulating technique in rotator cuff repair. J Shoulder Elbow Surg. 2017;26(8):1360–6.

    PubMed  Google Scholar 

  61. Jo CH, Shin JS, Park IW, Kim H, Lee SY. Multiple channeling improves the structural integrity of rotator cuff repair. Am J Sports Med. 2013;41(11):2650–7.

    PubMed  Google Scholar 

  62. Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 1991;10(4):823–38.

    CAS  PubMed  Google Scholar 

  63. Shin SJ, Oh JH, Chung SW, Song MH. The efficacy of acromioplasty in the arthroscopic repair of small- to medium-sized rotator cuff tears without acromial spur: prospective comparative study. Arthroscopy. 2012;28(5):628–35.

    PubMed  Google Scholar 

  64. Chahal J, Mall N, MacDonald PB, et al. The role of subacromial decompression in patients undergoing arthroscopic repair of full-thickness tears of the rotator cuff: a systematic review and meta-analysis. Arthroscopy. 2012;28(5):720–7.

    PubMed  Google Scholar 

  65. Omae H, Steinmann SP, Zhao C, et al. Biomechanical effect of rotator cuff augmentation with an acellular dermal matrix graft: a cadaver study. Clin Biomech (Bristol, Avon). 2012;27(8):789–92.

    Google Scholar 

  66. Milks RA, Kolmodin JD, Ricchetti ET, Iannotti JP, Derwin KA. Augmentation with a reinforced acellular fascia lata strip graft limits cyclic gapping of supraspinatus repairs in a human cadaveric model. J Shoulder Elbow Surg. 2018;27(6):1105–11.

    PubMed  Google Scholar 

  67. Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy. 2008;24(4):403–9.. e401

    PubMed  Google Scholar 

  68. Barber FA, Burns JP, Deutsch A, Labbe MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15.

    PubMed  Google Scholar 

  69. Yoon JP, Chung SW, Kim JY, et al. Outcomes of combined bone marrow stimulation and patch augmentation for massive rotator cuff tears. Am J Sports Med. 2016;44(4):963–71.

    PubMed  Google Scholar 

  70. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(6):1238–44.

    PubMed  Google Scholar 

  71. Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GA. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am. 2007;89(4):786–91.

    PubMed  Google Scholar 

  72. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004;13(5):538–41.

    PubMed  Google Scholar 

  73. Shea KP, McCarthy MB, Ledgard F, Arciero C, Chowaniec D, Mazzocca AD. Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study. Arthroscopy. 2010;26(9):1181–8.

    PubMed  Google Scholar 

  74. Beitzel K, McCarthy MB, Cote MP, et al. Properties of biologic scaffolds and their response to mesenchymal stem cells. Arthroscopy. 2014;30(3):289–98.

    PubMed  Google Scholar 

  75. Chahal J, Van Thiel GS, Mall N, et al. The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy. 2012;28(11):1718–27.

    PubMed  Google Scholar 

  76. Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41(2):263–70.

    PubMed  Google Scholar 

  77. Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41.

    PubMed  Google Scholar 

  78. Zumstein MA, Rumian A, Thelu CE, et al. SECEC Research Grant 2008 II: use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study. J Shoulder Elbow Surg. 2016;25(1):2–11.

    PubMed  Google Scholar 

  79. Cross JA, Cole BJ, Spatny KP, et al. Leukocyte-reduced platelet-rich plasma normalizes matrix metabolism in torn human rotator cuff tendons. Am J Sports Med. 2015;43(12):2898–906.

    PubMed  Google Scholar 

  80. Hurley ET, Lim Fat D, Moran CJ, Mullett H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am J Sports Med. 2018:363546517751397.

    Google Scholar 

  81. Wang A, McCann P, Colliver J, et al. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial. Am J Sports Med. 2015;43(6):1430–7.

    PubMed  Google Scholar 

  82. Depres-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elbow Surg. 2016;25(12):2078–85.

    PubMed  Google Scholar 

  83. Jo CH, Shin JS, Lee YG, et al. Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med. 2013;41(10):2240–8.

    PubMed  Google Scholar 

  84. Vavken P, Sadoghi P, Palmer M, et al. Platelet-rich plasma reduces retear rates after arthroscopic repair of small- and medium-sized rotator cuff tears but is not cost-effective. Am J Sports Med. 2015;43(12):3071–6.

    PubMed  Google Scholar 

  85. Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47.

    PubMed  Google Scholar 

  86. Hernigou P, Merouse G, Duffiet P, Chevalier N, Rouard H. Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop. 2015;39(6):1219–25.

    PubMed  Google Scholar 

  87. Ahn JO, Chung JY, Kim DH, Im W, Kim SH. Differences of RNA expression in the tendon according to anatomic outcomes in rotator cuff repair. Am J Sports Med. 2017;45(13):2995–3003.

    PubMed  Google Scholar 

  88. Kluger R, Huber KR, Seely PG, Berger CE, Frommlet F. Novel Tenascin-C haplotype modifies the risk for a failure to heal after rotator cuff repair. Am J Sports Med. 2017;45(13):2955–64.

    PubMed  Google Scholar 

  89. Tashjian RZ, Granger EK, Zhang Y, Teerlink CC, Cannon-Albright LA. Identification of a genetic variant associated with rotator cuff repair healing. J Shoulder Elbow Surg. 2016;25(6):865–72.

    PubMed  Google Scholar 

  90. Lamplot JD, Angeline M, Angeles J, et al. Distinct effects of platelet-rich plasma and BMP13 on rotator cuff tendon injury healing in a rat model. Am J Sports Med. 2014;42(12):2877–87.

    PubMed  Google Scholar 

  91. Arimura H, Shukunami C, Tokunaga T, et al. TGF-beta1 improves biomechanical strength by extracellular matrix accumulation without increasing the number of tenogenic lineage cells in a rat rotator cuff repair model. Am J Sports Med. 2017;45(10):2394–404.

    PubMed  Google Scholar 

  92. Honda H, Gotoh M, Kanazawa T, et al. Hyaluronic acid accelerates tendon-to-bone healing after rotator cuff repair. Am J Sports Med. 2017;45(14):3322–30.

    PubMed  Google Scholar 

  93. Shah SA, Kormpakis I, Havlioglu N, Ominsky MS, Galatz LM, Thomopoulos S. Sclerostin antibody treatment enhances rotator cuff tendon-to-bone healing in an animal model. J Bone Joint Surg Am. 2017;99(10):855–64.

    PubMed  PubMed Central  Google Scholar 

  94. Tokunaga T, Karasugi T, Arimura H, et al. Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model. J Shoulder Elbow Surg. 2017;26(10):1708–17.

    PubMed  Google Scholar 

  95. Friel NA, Wang VM, Slabaugh MA, Wang F, Chubinskaya S, Cole BJ. Rotator cuff healing after continuous subacromial bupivacaine infusion: an in vivo rabbit study. J Shoulder Elbow Surg. 2013;22(4):489–99.

    PubMed  Google Scholar 

  96. Rhee SM, Chung NY, Jeong HJ, Oh JH. Subacromial local anesthetics do not interfere with rotator cuff healing after arthroscopic repair. Am J Sports Med. 2018;46(5):1097–105.

    PubMed  Google Scholar 

  97. Dimmen S, Engebretsen L, Nordsletten L, Madsen JE. Negative effects of parecoxib and indomethacin on tendon healing: an experimental study in rats. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):835–9.

    PubMed  Google Scholar 

  98. Dimmen S, Nordsletten L, Engebretsen L, Steen H, Madsen JE. The effect of parecoxib and indometacin on tendon-to-bone healing in a bone tunnel: an experimental study in rats. J Bone Joint Surg Br. 2009;91(2):259–63.

    CAS  PubMed  Google Scholar 

  99. Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med. 2006;34(3):362–9.

    PubMed  Google Scholar 

  100. Chechik O, Dolkart O, Mozes G, Rak O, Alhajajra F, Maman E. Timing matters: NSAIDs interfere with the late proliferation stage of a repaired rotator cuff tendon healing in rats. Arch Orthop Trauma Surg. 2014;134(4):515–20.

    PubMed  Google Scholar 

  101. Connizzo BK, Yannascoli SM, Tucker JJ, et al. The detrimental effects of systemic ibuprofen delivery on tendon healing are time-dependent. Clin Orthop Relat Res. 2014;472(8):2433–9.

    PubMed  Google Scholar 

  102. Oh JH, Seo HJ, Lee YH, Choi HY, Joung HY, Kim SH. Do selective COX-2 inhibitors affect pain control and healing after arthroscopic rotator cuff repair? A preliminary study. Am J Sports Med. 2018;46(3):679–86.

    PubMed  Google Scholar 

  103. Galatz LM, Charlton N, Das R, Kim HM, Havlioglu N, Thomopoulos S. Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elbow Surg. 2009;18(5):669–75.

    PubMed  Google Scholar 

  104. Lee BG, Cho NS, Rhee YG. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. Arthroscopy. 2012;28(1):34–42.

    PubMed  Google Scholar 

  105. Cuff DJ, Pupello DR. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol. J Shoulder Elbow Surg. 2012;21(11):1450–5.

    PubMed  Google Scholar 

  106. Keener JD, Galatz LM, Stobbs-Cucchi G, Patton R, Yamaguchi K. Rehabilitation following arthroscopic rotator cuff repair: a prospective randomized trial of immobilization compared with early motion. J Bone Joint Surg Am. 2014;96(1):11–9.

    PubMed  Google Scholar 

  107. Koh KH, Lim TK, Shon MS, Park YE, Lee SW, Yoo JC. Effect of immobilization without passive exercise after rotator cuff repair: randomized clinical trial comparing four and eight weeks of immobilization. J Bone Joint Surg Am. 2014;96(6):e44.

    PubMed  Google Scholar 

  108. Chang KV, Hung CY, Han DS, Chen WS, Wang TG, Chien KL. Early versus delayed passive range of motion exercise for arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am J Sports Med. 2015;43(5):1265–73.

    PubMed  Google Scholar 

  109. Kluczynski MA, Isenburg MM, Marzo JM, Bisson LJ. Does early versus delayed active range of motion affect rotator cuff healing after surgical repair? A systematic review and meta-analysis. Am J Sports Med. 2016;44(3):785–91.

    PubMed  Google Scholar 

  110. Kluczynski MA, Nayyar S, Marzo JM, Bisson LJ. Early versus delayed passive range of motion after rotator cuff repair: a systematic review and meta-analysis. Am J Sports Med. 2015;43(8):2057–63.

    PubMed  Google Scholar 

  111. McNamara WJ, Lam PH, Murrell GA. The relationship between shoulder stiffness and rotator cuff healing: a study of 1,533 consecutive arthroscopic rotator cuff repairs. J Bone Joint Surg Am. 2016;98(22):1879–89.

    PubMed  Google Scholar 

  112. Saltzman BM, Zuke WA, Go B, et al. Does early motion lead to a higher failure rate or better outcomes after arthroscopic rotator cuff repair? A systematic review of overlapping meta-analyses. J Shoulder Elbow Surg. 2017;26(9):1681–91.

    PubMed  Google Scholar 

  113. Thigpen CA, Shaffer MA, Gaunt BW, Leggin BG, Williams GR, Wilcox RB 3rd. The American Society of Shoulder and Elbow Therapists’ consensus statement on rehabilitation following arthroscopic rotator cuff repair. J Shoulder Elbow Surg. 2016;25(4):521–35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Voss or Augustus D. Mazzocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Cite this chapter

Vogel, L.A., Voss, A., Mazzocca, A.D. (2019). Healing of the Rotator Cuff Tendon. In: Imhoff, A.B., Savoie, F.H. (eds) Rotator Cuff Across the Life Span. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58729-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58729-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58728-7

  • Online ISBN: 978-3-662-58729-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics