Skip to main content

Parallel Inelastic Heterogeneous Multi-Scale Simulations

  • Chapter
  • First Online:
Multi-scale Simulation of Composite Materials

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

We recall the heterogeneous multi-scale method for elasticity and its extension to inelasticity within a two-scale energetic approach, where the fine-scale material properties are evaluated in Representative Volume Elements. These RVEs are located at Gauß points of a coarse finite element mesh. Within this \(\text {FE}^2\) method the displacement is approximated on a coarse-scale, and depending on the strain at the Gauß points in every RVE a periodic micro-fluctuation and the internal variables describing the material history in this RVE are computed. Together, this defines the global energy and the dissipation functional, both depending on coarse-scale displacements as well as on fluctuations and internal variables on the micro-scale. Here we introduce a parallel realisation of this method which allows the computation of 3D micro-structures with fine resolution. It is based on the parallel representation of the RVE with distributed internal variables associated to each Gauß points, and a parallel multigrid solution method in the nonlinear computation of the micro-fluctuations and for the up-scaling of the algorithmic tangent within the incremental loading steps of the macro-problem. The efficiency of the method is demonstrated for a simple damage model combined with elasto-plasticity describing a PBT matrix material with glass fibre inclusions. For this investigation we use the material models in J. Spahn (Ph.D. thesis Kaiserslautern 2015) and the software developed by R. Shirazi Nejad (Ph.D. thesis Karlsruhe 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BASF data sheet on http://www.plasticsportal.net.

  2. 2.

    Data sheet on http://www.matweb.com.

  3. 3.

    AMD Opteron 6376 processor with 2.3 GHz and 512 GB RAM.

  4. 4.

    https://www.scc.kit.edu/dienste/forhlr2.php.

  5. 5.

    https://www.scc.kit.edu/dienste/ic2.php.

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media : Mathematical Problems in the Mechanics of Composite Materials. Springer, Dordrecht (1989)

    MATH  Google Scholar 

  3. Balzani, D., Gandhi, A., Klawonn, A., Lanser, M., Rheinbach, O., Schröder, J.: One-way and fully-coupled FE2 methods for heterogeneous elasticity and plasticity problems: Parallel scalability and an application to thermo-elastoplasticity of dual-phase steels. In: Software for Exascale Computing-SPPEXA 2013–2015, pp. 91–112. Springer (2016)

    Google Scholar 

  4. Diebels, S., Jung, A., Chen, Z., Seibert, H., Scheffer, T.: Experimentelle Mechanik: Von der Messung zum Materialmodell. Rundbrief GAMM (2015)

    Google Scholar 

  5. Feyel, F., Chaboche, J.L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183(3), 309–330 (2000)

    Article  Google Scholar 

  6. Fritzen, F., Hodapp, M.: The finite element square reduced (FE2R) method with gpu acceleration: towards three-dimensional two-scale simulations. Int. J. Numer. Methods Eng. 107(10), 853–881 (2016)

    Article  MathSciNet  Google Scholar 

  7. Fritzen, F., Hodapp, M., Leuschner, M.: GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput. Methods Appl. Mech. Eng. 278, 186–217 (2014)

    Article  MathSciNet  Google Scholar 

  8. GeoDict: The digital material laboratory. http://www.geodict.de/ (2014)

  9. Ju, J.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solids Struct. 25(7), 803–833 (1989)

    Article  Google Scholar 

  10. Kachanov, L.: Introduction to Continuum Damage Mechanics. Springer, Mechanics of Elastic Stability (1986)

    Book  Google Scholar 

  11. Lippmann, H., Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin Heidelberg (1996)

    MATH  Google Scholar 

  12. Maurer, D., Wieners, C.: A parallel block LU decomposition method for distributed finite element matrices. Parallel Comput. 37(12), 742–758 (2011)

    Article  Google Scholar 

  13. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1), 372–382 (1999)

    Article  Google Scholar 

  14. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. Comput. Methods Appl. Mech. Eng. 171, 3–4 (1999)

    Article  Google Scholar 

  15. Mielke, A.: Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 2, chap. 6, pp. 461–559. North-Holland (2005)

    Google Scholar 

  16. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Applied Mathematical Sciences. Springer, New York (2015)

    Book  Google Scholar 

  17. Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39(2), 642–668 (2007)

    Article  MathSciNet  Google Scholar 

  18. Papanicolau, G., Bensoussan, A., Lions, J.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its applications. Elsevier Science (1978)

    Google Scholar 

  19. Rabotnov, Y.: Creep Problems in Structural Members. Elsevier, Applied Mathematics and Mechanics Series (1969)

    MATH  Google Scholar 

  20. Röhrig, C.: Personal communication (2016)

    Google Scholar 

  21. Röhrig, C., Scheffer, T., Diebels, S.: Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system. In: Continuum Mechanics and Thermodynamics, pp. 1–19 (2017)

    Google Scholar 

  22. Sanchez-Palencia, E., Zaoui, A.: Homogenization techniques for composite media: lectures delivered at the CISM International Center for Mechanical Sciences, Udine, Italy, July 1–5, 1985. In: Lecture Notes in Physics. Springer (1987)

    Google Scholar 

  23. Schröder, J.: A numerical two-scale homogenization scheme: the FE2-method. In: Plasticity and Beyond: Microstructures. Crystal-Plasticity and Phase Transitions, pp. 1–64. Springer, Vienna (2014)

    Chapter  Google Scholar 

  24. Shirazi Nejad, R.: A parallel elastic and inelastic heterogeneous multiscale method for rate-independent materials. Ph.D. thesis, Karlsruhe Institute of Technology (2017)

    Google Scholar 

  25. Simo, J., Hughes, T.: Computational Inelasticity. Interdisciplinary Applied Mathematics. Springer, New York (2000)

    Google Scholar 

  26. Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155(1–2), 181–192 (1998)

    Article  Google Scholar 

  27. Spahn, J.: An efficient multiscale method for modeling progressive damage in composite materials. Ph.D. thesis, Technische Universität Kaiserslautern (2015)

    Google Scholar 

  28. Spahn, J., Andrä, H., Kabel, M., Müller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 268, 871–883 (2014)

    Article  MathSciNet  Google Scholar 

  29. Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain—existence and regularity results. Zeitschrift Angewandte Mathematik und Mechanik 90, 88–112 (2010)

    Article  MathSciNet  Google Scholar 

  30. Weinan, E., Engquist, B., et al.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MathSciNet  Google Scholar 

  31. Wieners, C.: A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Comput. Vis. Sci. 13(4), 161–175 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wieners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nejad, R.S., Wieners, C. (2019). Parallel Inelastic Heterogeneous Multi-Scale Simulations. In: Diebels, S., Rjasanow, S. (eds) Multi-scale Simulation of Composite Materials. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57957-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57957-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57956-5

  • Online ISBN: 978-3-662-57957-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics