Skip to main content
  • 1075 Accesses

Abstract

In this chapter, some aspects of steam cycles combined to modular HTR as heat source are explained. On the basis of a simplified flow sheet, the process and the main thermodynamic aspects are explained. Simple estimations deliver already the practical result of a net efficiency of 40% applying today-established parameters of the steam cycle with temperatures of 530 °C. The influence of rising steam temperature and pressure as well of modifications of the flow sheet are discussed. The process of condensation and the removal of waste heat by freshwater cooling, use of wet cooling towers or dry air cooling towers are explained. Especially the last-mentioned concept makes HTR plants in future attractive for arid sites. For the steam cycle conventional components like steam turbines, feed water pumps and preheater sections can be applied. The optimization of steam cycle, especially the choice of higher steam temperature and pressure, is a further important point of explanation in this chapter. The production of steam with higher temperature than as example 560 °C is possible, although more expensive alloys have to be inserted. In the practical design, a temperature rise of 30 °C allows a rise of efficiency by 1 point. The optimization of all relevant parameters of the cycle has to take into account a long operation time of more than 40 years. Therefore, dynamic models like life cycle cost analysis as example have to be applied, to find an optimal layout of the plant. In this connection, the introduction of a reheat into the steam cycle has to be analyzed too. The potential of the steam cycle, including the coupling of the modular HTR with combined cycles, generally is large and offers good chance for the modular HTR on many sites. Additionally, modular plants are well suited for cogeneration processes, which are explained in principle here too. These processes allow to deliver heat for district heat systems, seawater desalination, and process steam for many industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HTR-PM, Description of the concept of power plant, INET/Tsinghua University, 2009

    Google Scholar 

  2. U. Grigull (Editor), Properties of water and steam in SI-units, Springer-Verlag, Berlin, Heidelberg, New York, R. Oldenburg, München, 1982

    Google Scholar 

  3. L. Musil, The planning of steam turbine power plants, Springer, Berlin, Göttingen, Heidelberg, 1948

    Google Scholar 

  4. K. Knizia, The thermodynamics of the steam turbine process, Springer-Verlag, Berlin, Heidelberg, New York, 1966

    Google Scholar 

  5. K. Strauβ, Technology of power plants, Springer-Verlag, Berlin, Heidelberg, New York, 1992

    Google Scholar 

  6. L. C. Wilbur, Handbook of energy system engineering, A Wiley Interscience Publication, John Wiley & Sons, New York, 1985

    Google Scholar 

  7. British electricity international modern power station practice, Vol. A til M, Pergamon Press, Oxford, New York, 1991

    Google Scholar 

  8. K. Schröder, Large steam turbine power plants, Vol. 1–3, Springer Verlag, Berlin, Heidelberg, New York, 1959

    Google Scholar 

  9. S. Kriese, Fundaments of power plant—energy technology, Vulkan Verlag, Dr. W. Classen, Essen, 1968

    Google Scholar 

  10. H. Thomas, Thermal power plants, Springer-Verlag, Berlin, Heidelberg, New York, 1965

    Google Scholar 

  11. Th. Bohn (Editor), Handbook edition energy, Vol. 5, 6: concepts and design of steam turbine plants, Technischer Verlag Resch +TŰV Verlag, 1985

    Google Scholar 

  12. Bäumer R. and Kalinowski I., THTR commissioning and operation experience, 11. International Conference on the HTGR, Dimitrovgrad, June 1989

    Google Scholar 

  13. Komorowski I. and Schramm G., Turbomachines, VER-Verlag Technik, Berlin, 1987

    Google Scholar 

  14. Traupel W., Thermal turbomachines, Springer-Verlag, Berlin, Heidelberg, New York, 1977

    Google Scholar 

  15. Steag AG, Electricity from hard coal, Springer Verlag, Berlin, 1988

    Google Scholar 

  16. Berliner P., Cooling towers, Springer-Verlag, Berlin, Heidelberg, New York, 1975

    Google Scholar 

  17. Company information HRB, The water-steam-cycle of the THTR 300, Konsortium THTR/Hochtemperatur—Nuclear power plant (THTR), D HRB 1261 81 DE, 1981

    Google Scholar 

  18. Harder H., Oehme H., Schöning J., Thurnher K., The 300 MW Thorium high-temperature nuclear power plant (THTR), Atomwirtschaft, 5, May, 1971

    Google Scholar 

  19. Hirschfelder G., The dry air cooling tower of the 300 MW THTR power plant in Schmehausen/Uentrop, VGB Kraftweekstechnik, 53, 1973

    Google Scholar 

  20. Renz U., Becker N., Comparison of cooling systems for air cooling towers, BWK 30, 1978

    Google Scholar 

  21. Technical regulations for steam generators, TRD 401: components of steam generators, Carl Heymanns, Köln, 1979

    Google Scholar 

  22. Skrotzki B.G.A., Vopat W.A., Power station engineering and economy, McGraw Hill Book Comp. Inc., New York, Toronto, London, 1960

    Google Scholar 

  23. NN, Modern power station practice, Vol. B, Boilers and auxiliary plants, Pergaman Press, Oxford, 1971

    Google Scholar 

  24. Dolezal R., Steam generation, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985

    Google Scholar 

  25. Riedle K., Developments in power plant technology, BWK, 52/3, 2000

    Google Scholar 

  26. Böhm H., Fossil fired power plants—status, requirements and tendencies of development, VGB Kraftwerkstechnik, 74, Vol. 3, 1994

    Google Scholar 

  27. K. Riedle, B. Rukes, E. Wittchow, Rising up the efficiencies of power plants in the past and future, Conference of VGB “Power plant technology 2000”, 1990

    Google Scholar 

  28. E. Rebhahn (Editor), Energy handbook; production, conversion and use of energy, Springer, Berlin, Heidelberg, 2002

    Google Scholar 

  29. F.L. Curzon, B. Ahlborn, Efficiency of Carnot engine at maximum power output, American Journal of Physics, Vol. 43, No. 22, 1975

    Article  Google Scholar 

  30. J. Bock, Thermo-economical analysis of cogeneration with small cogeneration plants for the decentralized heat supply, VDI, Progress Reports, 6, No. 259, VDI, Düsseldorf, 1991

    Google Scholar 

  31. W. Riesner, W. Sieber (Editors), Economic application of energy, VEB Deutscher Verlag Für Grundstoffindustrie, Leipzig, 1978

    Google Scholar 

  32. G. Koch, Cogeneration process, VDI-Verlag, Düsseldorf, 1996

    Google Scholar 

  33. W. Fratscher (editor), Energy economy for chemical engineers, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Kugeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kugeler, K., Zhang, Z. (2019). Power Conversion Cycle. In: Modular High-temperature Gas-cooled Reactor Power Plant. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57712-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57712-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57710-3

  • Online ISBN: 978-3-662-57712-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics