Skip to main content

Lineare Optimierung

  • Chapter
  • First Online:
Kombinatorische Optimierung

Part of the book series: Masterclass ((MASTERCLASS))

  • 6357 Accesses

Zusammenfassung

In diesem Kapitel werden wir die wichtigsten Definitionen und Resultate der linearen Optimierung zusammenstellen. Darunter sind etwas Polyedertheorie, der Simplexalgorithmus und der Dualitätssatz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemeine Literatur:

  • Bertsimas, D., und Tsitsiklis, J.N. [1997]: Introduction to Linear Optimization. Athena Scientific, Belmont 1997

    Google Scholar 

  • Chvátal, V. [1983]: Linear Programming. Freeman, New York 1983

    Google Scholar 

  • Matoušek, J., und Gärtner, B. [2007]: Understanding and Using Linear Programming. Springer, Berlin 2007

    Google Scholar 

  • Padberg, M. [1999]: Linear Optimization and Extensions. 2. Aufl. Springer, Berlin 1999

    Book  Google Scholar 

  • Schrijver, A. [1986]: Theory of Linear and Integer Programming. Wiley, Chichester 1986

    Google Scholar 

Zitierte Literatur:

  • Avis, D., und Chvátal, V. [1978]: Notes on Bland’s pivoting rule. Mathematical Programming Study 8 (1978), 24–34

    Google Scholar 

  • Bland, R.G. [1977]: New finite pivoting rules for the simplex method. Mathematics of Operations Research 2 (1977), 103–107

    Article  MathSciNet  Google Scholar 

  • Borgwardt, K.-H. [1982]: The average number of pivot steps required by the simplex method is polynomial. Zeitschrift für Operations Research 26 (1982), 157–177

    MathSciNet  MATH  Google Scholar 

  • Carathéodory, C. [1911]: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconto del Circolo Matematico di Palermo 32 (1911), 193–217

    Article  Google Scholar 

  • Dantzig, G.B. [1951]: Maximization of a linear function of variables subject to linear inequalities. In: Activity Analysis of Production and Allocation (T.C. Koopmans, Hrsg.), Wiley, New York 1951, pp. 359–373

    Google Scholar 

  • Dantzig, G.B., Orden, A., und Wolfe, P. [1955]: The generalized simplex method for minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics 5 (1955), 183–195

    Article  MathSciNet  Google Scholar 

  • Farkas, G. [1894]: A Fourier-féle mechanikai elv alkalmazásai. Mathematikai és Természettudományi Értesitö 12 (1894), 457–472

    Google Scholar 

  • Gale, D., Kuhn, H.W., und Tucker, A.W. [1951]: Linear programming and the theory of games. In: Activity Analysis of Production and Allocation (T.C. Koopmans, Hrsg.), Wiley, New York 1951, pp. 317–329

    Google Scholar 

  • Hoffman, A.J., und Kruskal, J.B. [1956]: Integral boundary points of convex polyhedra. In: Linear Inequalities and Related Systems; Annals of Mathematical Study 38 (H.W. Kuhn, A.W. Tucker, Hrsg.), Princeton University Press, Princeton 1956, pp. 223–246

    Google Scholar 

  • Kelner, J.A., und Spielman, D.A. [2006]: A randomized polynomial-time simplex algorithm for linear programming. Proceedings of the 38th Annual ACM Symposium on Theory of Computing (2006), 51–60

    Google Scholar 

  • Klee, V., und Minty, G.J. [1972]: How good is the simplex algorithm? In: Inequalities III (O. Shisha, Hrsg.), Academic Press, New York 1972, pp. 159–175

    Google Scholar 

  • Kuhn, H.W. [1956]: Solvability and consistency for linear equations and inequalities. The American Mathematical Monthly 63 (1956), 217–232

    Article  MathSciNet  Google Scholar 

  • Minkowski, H. [1896]: Geometrie der Zahlen. Teubner, Leipzig 1896

    Google Scholar 

  • Motzkin, T.S. [1936]: Beiträge zur Theorie der linearen Ungleichungen (Dissertation). Azriel, Jerusalem 1936

    Google Scholar 

  • von Neumann, J. [1947]: Discussion of a maximum problem. Working paper. Published in: John von Neumann, Collected Works; Vol. VI (A.H. Taub, Hrsg.), Pergamon Press, Oxford 1963, pp. 27–28

    Google Scholar 

  • Spielman, D.A., und Teng, S.-H. [2004]: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. Journal of the ACM 51 (2004), 385–463

    Article  MathSciNet  Google Scholar 

  • Steinitz, E. [1916]: Bedingt konvergente Reihen und konvexe Systeme. Journal für die reine und angewandte Mathematik 146 (1916), 1–52

    Google Scholar 

  • Weyl, H. [1935]: Elementare Theorie der konvexen Polyeder. Commentarii Mathematici Helvetici 7 (1935), 290–306

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Korte .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korte, B., Vygen, J. (2018). Lineare Optimierung. In: Kombinatorische Optimierung. Masterclass. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57691-5_3

Download citation

Publish with us

Policies and ethics