Skip to main content

Homogenization Methods and Generalized Continua in Linear Elasticity

  • Reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 115 Accesses

Synonyms

Homogenization method :

The homogenization method is an upscaling method that proceeds from microscale to macroscale. In place of homogenized behavior, one can equivalently use macroscopic behavior, effective behavior, or upscaled behavior.

Generalized continua :

The term “generalized continua” could be replaced by enriched continua or enhanced continua. This notion encompasses several types of non-Cauchy behavior, as Cosserat media, strain gradient or higher gradient media, micromorphic material, etc. In dynamics, metamaterials and inner resonance materials also correspond to generalized continua.

Definition

Homogenization method :

The homogenization method used in this entry is the upscaling two-scale asymptotic method of periodic media. It applies in statics and dynamics and provides, in situation of scale separation, the macroscopic behavior of the microstructured (discrete or continuous) medium, at the leading order but also at the higher orders through correctors. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoul Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homogenizing frame lattices. Math Mech Complex Syst 6(3): 213–250

    Article  MathSciNet  MATH  Google Scholar 

  • Alibert J-J, Seppecher P, Dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. In: Mathematics and Mechanics of Solids. SAGE Publications, London, pp 23

    Google Scholar 

  • Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23:1482–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Conca C (1998) Bloch wave homogenization and spectral asymptotic analysis. J Math Pures et Appli 77:153–208

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Briane M, Vanninathan M (2016) A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SeMA Journal: Boletin de la Sociedad Española de Matemática Aplicada 73(3):237–259

    Article  MathSciNet  MATH  Google Scholar 

  • Andrianov I (2002) The specific features of the limiting transition from a discrete elastic medium to a continuous one. J Appl Math Mech 66:261–265

    Article  MathSciNet  MATH  Google Scholar 

  • Andrianov I, Bolshakov VI, Danishevs’kyy VV, Weichert D (2008) Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc R Soc Math Phys Eng Sci 464(2093):1181–1201

    Article  MATH  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solid Struct 48(13):1962–1990

    Article  Google Scholar 

  • Auriault J-L, Bonnet G (1985) Dynamique des composites élastiques périodiques. Arch Mech 37:269–284

    MATH  Google Scholar 

  • Auriault J-L, Boutin C, Geindreau C (2009) Homogenization of coupled phenomena in heterogenous media. ISTE Ltd and John Wiley & Sons Inc, United Kingdom

    Book  Google Scholar 

  • Auriault J-L, Boutin C (2012) Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int J Solid Struct 49:3269–3281

    Article  Google Scholar 

  • Bellieud M, Bouchitté G (2002) Homogenization of a soft elastic material reinforced by fibers. Asymptot Anal 32(2):153–183

    MathSciNet  MATH  Google Scholar 

  • Bakhvalov NS, Panasenko GP (1984) Homogenization: averaging processes in periodic media. Nauka, Moscow (in Russian). English translation in: Mathematics and its Applications (Soviet Series) vol 36, Kluwer Academic, Dordrecht/Boston/London

    Google Scholar 

  • Bonnet G, Monchiet V (2015) Low frequency locally resonant metamaterials containing composite inclusions. J Acoust Soc Am 137(6):3263–3271

    Article  Google Scholar 

  • Bonnet G, Monchiet V (2017) Dynamic mass density of resonant metamaterials with homogeneous inclusions. J Acoust Soc Am 142(2):890–901

    Article  Google Scholar 

  • Boutin C, Auriault JL (1991) Dynamic behaviour of porous media saturated by a visoelastic fluid. Application to bituminous concrete. Int J Eng Sci 28(11):1157–1181

    Article  MATH  Google Scholar 

  • Boutin C, Auriault JL (1993) Rayleigh scattering in elastic composite materials. Int J Eng Sci 31:1669–168

    Article  MathSciNet  MATH  Google Scholar 

  • Boutin C (1995) Microstructural influence on heat conduction. Int J Heat Mass Transf 38(17): 3181–3195

    Article  MATH  Google Scholar 

  • Boutin C (1996) Microstructural effects in elastic composites. Int J Solids Struct 33(7):1023–1051

    Article  MATH  Google Scholar 

  • Boutin C, Soubestre J (2011) Generalized inner bending continua for linear fiber reinforced materials. Int J Solids Struct 48(3):517–534

    Article  MATH  Google Scholar 

  • Boutin C, Hans S, Chesnais C (2010) Generalized beam and continua. Dynamics of reticulated structures. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized continua. Springer, New York, pp 131–141

    Chapter  MATH  Google Scholar 

  • Boutin C, Soubestre J, Dietz MS, Taylor C (2013) Experimental evidence of the high-gradient behaviour fiber reinforced materials. Eur J Mech-A Solids 42:280–298.

    Article  Google Scholar 

  • Boutin C, Rallu A, Hans S (2014) Large scale modulation of high frequency waves in periodic elastic composites. J Mech Phys Solids 70:362–381

    Article  MathSciNet  MATH  Google Scholar 

  • Boutin C, Dell’Isola F, Giorgio I, Placidi L (2017) Linear pantographic sheets: asymptotic micro-macro models identification. Math Mech Complex Syst 5(2):127–162

    Article  MathSciNet  MATH  Google Scholar 

  • Boutin C, Auriault J-L, Bonnet G (2018) Inner Resonance in media governed by hyperbolic and parabolic dynamic equations – principle and examples. In: Altenbach H et al (eds) Generalized models and non-classical approaches in complex materials 1. Advanced structured materials, vol 89. Springer pp 83–134

    Google Scholar 

  • Brillouin L (1946) Wave propagation in periodic structures. McGraw-Hill, New York

    MATH  Google Scholar 

  • Caillerie D, Trompette P, Verna P (1989) Homogenisation of periodic trusses. In: IASS symposium, 10 years of progress in shell and spatial structures, Madrid

    Google Scholar 

  • Caillerie D, Mourad A, Raoult A (2006) Discrete homogenization in graphene sheet modeling. J Elast 84(1):33–68

    Article  MathSciNet  MATH  Google Scholar 

  • Capdeville Y, Guillot L, Marigo JJ (2010) 1-D non periodic homogenization for the wave equation. Geophys J Int 181:897–910

    Google Scholar 

  • Chen W, Fish J (2001) A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J Appl Mech 68:153–161

    Article  MATH  Google Scholar 

  • Chesnais C, Hans S, Boutin C (2007) Wave propagation and diffraction in discrete structures: anisotropy and internal resonance. PAMM 7:1090401–1090402. The 6th International Congress on Industrial and Applied Mathematics, Zürich, 16–20 July 2007

    Google Scholar 

  • Chesnais C, Boutin C, Hans S (2012) Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics. J Acoust Soc Am (132) 4:2873–2886

    Google Scholar 

  • Cioranescu D, Paulin JSJ (1999) Homogenization of reticulated structures. Applied mathematical sciences, vol 136. Springer, New York

    Google Scholar 

  • Conca C (1999) Bloch waves. In: Encyclopedia Mathematics. Hazewinkel M, et al (eds) Kluwer Academic, Amsterdam, pp 72–74

    Google Scholar 

  • Cosserat E, Cosserat F (1909) Théorie des corps déformables. Hermann Archives (reprint 2009)

    Google Scholar 

  • Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc R Soc A 466:2341–2362

    Article  MathSciNet  MATH  Google Scholar 

  • Cupillard P, Capdeville Y (2018) Non-periodic homogenization of 3-D elastic media for the seismic wave equation. Geophys J Int (213) 2:983–1001

    Google Scholar 

  • Daya EM, Braikat B, Damil N, Potier-Ferry M (2002) Continuum modeling for the modulated vibration modes of large repetitive structures. C R Mec 330:333–338

    Article  MATH  Google Scholar 

  • de Buhan P, Sudret B (2000) Micropolar multiphase model for materials reinforced by linear inclusions. Eur J Mech-A/Solids 19(4):669–687

    Article  MATH  Google Scholar 

  • Dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C R Acad Sci Ser II 321(8):303–308

    MATH  Google Scholar 

  • Dell’Isola F, Seppecher P, Della Corte A (2015) The postulations á la d’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc Lond A 471(2183):20150415

    Article  MathSciNet  MATH  Google Scholar 

  • Dell’Isola F, Della Corte A, Giorgio I (2016) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22:852–872

    Article  MathSciNet  MATH  Google Scholar 

  • Dell’Isola F, Della Corte A, Giorgio I, Scerrato D (2016) Pantographic 2D sheets: discussions of some numerical investigations and potential applications. Int J Nonlinear Mech 80:200–208

    Article  Google Scholar 

  • Dumontet H (1986) Study of a boundary layer problem in elastic composite materials. ESAIM: Math Model Numer Anal 20(2):265–286

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev VA, Dell’Isola F, Boutin C, Steigmann D (2018) Linear pantographic sheets: existence and uniqueness of weak solutions. J Elast 132(2):175–196

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1968) Mechanics of micromorphic continua. In: Kröner E (ed) Proceedings of the IUTAM-symposium on the generalized cosserat continuum and the continuum theory of dislocations with applications. Springer. Freudenstadt/Stuttgart, pp 18–35

    Google Scholar 

  • Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):234–248

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses de l’Ecole des, Mines

    Google Scholar 

  • Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous Cosserat media. Int J Struct Solids 38:4585–4608

    Article  MathSciNet  MATH  Google Scholar 

  • Gambin B, Kröner E (1989) High order terms in the homogenized stress-strain relation of periodic elastic media. Phys Stat Sol (B) 151:513–519

    Article  Google Scholar 

  • Germain P (1973a) La méthode des puissances virtuelles en mécanique des milieux continus: Première partie: théorie du second gradient. J Mecanique 12: 235–274

    MATH  Google Scholar 

  • Germain P (1973b) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25:556–575

    Article  MATH  Google Scholar 

  • Gonella S, Ruzzene M (2008) Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int J Solids Struct 45:2897–2915

    Article  MATH  Google Scholar 

  • Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Rat Mech Anal 17:113–147

    Article  MathSciNet  MATH  Google Scholar 

  • Hans S, Boutin C (2008) Dynamics of discrete framed structures: A unified homogenized description. J Mech Mater Struct 3:1709–1739

    Article  Google Scholar 

  • Kouznetsova V, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550

    Article  MATH  Google Scholar 

  • Léné F (1978) Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement. C R Acad Sci Paris Ser IIB 286:75–78

    MATH  Google Scholar 

  • Lafarge D, Nemati N (2013) Nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media. Wave Motion 50:1016-1035

    Article  MathSciNet  MATH  Google Scholar 

  • Ma G, Sheng P (2016) Acoustic metamaterials: From local resonances to broad horizons. Sci Adv 2:e1501,595

    Article  Google Scholar 

  • Maugin GA (1970) Un principe variationnel pour des milieux micromorphiques non dissipatifs. C R Acad Sci Paris A 271:807–810

    MATH  Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Applied Mathematics and Mathematical Computation, vol 3. Chapman and Hall, London

    Google Scholar 

  • Maugin GA, Metrikine AV (eds) Mechanics of generalized continua – one hundred years after the cosserats. Advances in Mechanics and Mathematics, vol 21. Springer, New York (2010)

    Google Scholar 

  • Martinsson PG, Movchan AB (2003) Vibrations of lattice structures and phononic band gaps. Q J Mech Appl Math 12:45–64

    Article  MathSciNet  MATH  Google Scholar 

  • Milton GW (2007) New metamaterials with macroscopic behavior outside that of continuum elastodynamics. New J Phys 9:359

    Article  Google Scholar 

  • Mindlin RD (1964) Micro–structure in linear elasticity. Arch Rat Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD, Eshel NN (1968) On first strain gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  • Motro R (2003) Tensegrity. Structural Systems for the Future. Kogan Page, London/Sterling

    Google Scholar 

  • Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C R Acad Sci 318(11): 1417–1423

    MATH  Google Scholar 

  • Nassar H, He Q-C, Auffray N (2016) On asymptotic elastodynamic homogenization approaches for periodic media. J Mech Phys Solids 88: 274–290

    Article  MathSciNet  Google Scholar 

  • Neff P, Ghiba ID, Madeo A, Placidi L, Rosi G (2014) A unifying perspective: the relaxed linear micromorphic continuum. Cont Mech Therm 26:639–681

    Article  MathSciNet  MATH  Google Scholar 

  • Noor AK, Andersen CM (1979) Analysis of beam-like lattice trusses. Comput Methods Appl Mech Eng 2: 53–70

    Article  MATH  Google Scholar 

  • Nguetseng G (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J Math Anal 20:608–623

    Article  MathSciNet  MATH  Google Scholar 

  • Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of a heterogeneous linear elastic medium. Continuum Mech Thermodyn 9(5):241–257

    Article  MathSciNet  MATH  Google Scholar 

  • Pradel F, Sab K(1998) Homogenization of discrete media. J Phys de France 8:Pr8–31 7

    Google Scholar 

  • Raoult A, Caillerie D, Mourad A (2008) Elastic lattices: equilibrium, invariant laws and homogenization. Ann Univ Ferrara 54(2):297–318. Springer

    Google Scholar 

  • Rallu A, Hans S, Boutin C (2018) Asymptotic analysis of high-frequency modulation in periodic systems. Analytical study of discrete and continuous structures. J Mech Phys Solids 117:123–156

    Google Scholar 

  • Sanchez C, Arribart H, Giraud Guille MM (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture notes in physics, vol 127. Springer, Berlin

    MATH  Google Scholar 

  • Smyshlyaev VP, Cherednichenko KD (2000) On rigorous derivation of strain gradient effects in the overall behavior of periodic heterogeneous media. J Mech Phys Solids 48:1325–1357

    Article  MathSciNet  MATH  Google Scholar 

  • Soubestre J, Boutin C (2012) Non-local dynamic behavior of linear fiber reinforced materials. Mech Mater 55:16–32

    Article  Google Scholar 

  • Srikantha Phani A, Woodhouse J, Fleck NA (2006) Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 119:1995–2005

    Article  Google Scholar 

  • Timoshenko S (1976) Strength of materials, Parts I and II. Krieger, Huntington, New York

    MATH  Google Scholar 

  • Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogenization. Adv Eng Softw 29:699–705

    Article  Google Scholar 

  • Toupin R (1962) Elastic materials with couple-stresses. Arch. Rat Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Toupin R (1964) Theories of elasticity with couple-stress. Arch Rat Mech Anal 17(2):85–112

    Article  MathSciNet  MATH  Google Scholar 

  • Trabucho L, Viaño JM (1996) Mathematical modelling of rods. Handbook of numerical analysis, vol IV. North-Holland, Amsterdam, pp 487–974

    Google Scholar 

  • Tran T-H, Monchiet V, Bonnet G (2012) A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int J Solids Struct 49(5):783–792

    Article  Google Scholar 

  • Triantafyllidis N, Bardenhagen S (1996) The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J Mech Phys Solids 44:1891–1928

    Article  MathSciNet  MATH  Google Scholar 

  • Turbe N (1982) Applications of Bloch expansion to periodic elastic and viscoelastic media. Math Methods Appl Sci 4:433–449

    Article  MathSciNet  MATH  Google Scholar 

  • Vlasov VZ (1961) Thin walled elastic beams. NSF Publication, Washington, DC

    Google Scholar 

  • Wilcox C (1978) Theory of Bloch waves. J Anal Math 33:46–167

    Article  MathSciNet  MATH  Google Scholar 

  • Willis JR (2012) The construction of effective relation for waves in composites. C R Mecanique 340:181–192

    Article  Google Scholar 

  • Zhikov VV (2000) On an extension of the method of two-scale convergence and its applications. Sb Math 191:973–1014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This entry benefited from many scientific exchanges with number of colleagues, among which I would like to address special thanks to J.L. Auriault, G. Bonnet, D. Caillerie, C. Chesnais, F. dell’Isola, S. Forest, S. Hans, D. Lafarge, G. Maugin†,V. Montchiet, A. Rallu, K. Sab, L. Schwan, J. Soubestre, and R. Venegas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Boutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boutin, C. (2020). Homogenization Methods and Generalized Continua in Linear Elasticity. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55771-6_112

Download citation

Publish with us

Policies and ethics