Skip to main content

Dynamik der bodennahen Luftschichten, Diffusion und Austausch in Bodennähe

  • Chapter
  • First Online:
Physik unserer Umwelt: Die Atmosphäre
  • 7843 Accesses

Zusammenfassung

Unter bodennahen Luftschichten sind pauschal diejenigen Schichten der Atmosphäre zu verstehen, deren Dynamik durch die Bodenreibung, d. h. durch den Impulsaustausch mit dem Boden, bestimmt oder zumindest mitbestimmt wird. Diese Schichten, insbesondere die laminar-viskose Unterschicht, die Prandtl-Schicht und die Ekman-Schicht (Abschn. 3.4 und speziell Abb. 3.18) werden in diesem Kapitel behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin

    Book  Google Scholar 

  • Blackadar AK, Tennekes H (1968) Asymptotic similarity in neutral barotropic atmospheric boundary layers. J Atmos Sci 25:1015–1020

    Google Scholar 

  • Brutsaert W (1975a) The roughness length for water vapor, sensible heat, and other scalars. J Atmos Sci 32:2028–2031

    Article  Google Scholar 

  • Brutsaert W (1975b) A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour Res 11:543–550

    Article  Google Scholar 

  • Brutsaert W (1979) Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Bound-Lay Meteorol 16:365–388

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In: Haugen DA (Hrsg) Workshop on Micrometeorology. Am Meteorol Soc, Boston, S 67–100

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Chamberlain AC (1966) Transport of gases to and from grass and grass-like surfaces. Proc Roy Soc A 290:236–265

    Article  Google Scholar 

  • Chamberlain AC (1973) Deposition of gaseous SO2 (unveröffentlicht)

    Google Scholar 

  • Danckwerts PV (1970) Gas-liquid reactions. McGraw-Hill, London

    Google Scholar 

  • Davies CN (1966) Deposition of moving aerosols. In: Davies CN (ed) Aerosol Science. Academic Press, London, S 393–446

    Google Scholar 

  • Deacon EL (1977) Gas transfer to and across a air-water interface. Tellus 29:363–374

    Article  CAS  Google Scholar 

  • Dyer AJ (1965) The flux-gradient relation for turbulent heat transfer in the lower atmosphere. Quart J R Meteorol Soc 91:151–157

    Article  Google Scholar 

  • Dyer AJ, Bradley EF (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound-Lay Meteorol 22:3–19

    Article  Google Scholar 

  • Elliot WP (1958) The growth of the atmospheric internal boundary layer. Trans Am Geophys Union 39:1048–1054

    Google Scholar 

  • Estoque MA (1973) Numerical modelling of the planetary boundary layer. In: Haugen DA (Hrsg) Workshop on Micrometerology. Am Meteorol Soc, Boston, S 217–270

    Google Scholar 

  • Garland JA, Atkins DJ, Readings CJ, Caughey SJ (1974) Deposition of gaseous sulphur dioxide to the ground. Atmos Environ 8:25–79

    Article  CAS  Google Scholar 

  • Garland JA, Branson JR (1977) The deposition of sulphur dioxide to pine forrest assessed by a radioactive tracer method. Tellus 29:445–454

    Article  CAS  Google Scholar 

  • Hunt JCR, Simpson JE (1982) Atmospheric boundary layers over non-homogeneous terrain. In: Plate EJ (Hrsg) Engineering Meteorology. Elsevier, Amsterdam, S 269–318

    Google Scholar 

  • Jähne B, Huber W, Dutzi A, Wais T, Ilmberger J (1984) Wind/wavetunnel experiment on the Schmidt number and wave field dependence of air/water exchange. In: Brutsaert W, Jirka GH (Hrsg) Gas transfer at water surfaces. Reidel, Dordrecht, S 303–309

    Google Scholar 

  • Jähne B, Münnich KO, Bösinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air-water exchange. J Geophys Res 92:1937–1949

    Google Scholar 

  • Kazanski AB, Monin AS (1961) On the dynamical interaction between the atmosphere and the earth’s surface. Bull Acad Sci USSR, Serie Geophys 5:786–788

    Google Scholar 

  • Kromer B, Roether W (1983) Field measurements of air-sea gas exchange by the radon deficit method during Jasin (1978) and FGGE (1979). Meteor Forsch Erg Reihe A/B 24:55–75

    Google Scholar 

  • Liss PS (1971) Exchange of SO2 between the atmosphere and natural waters. Nature (London) 233:327–329

    Article  CAS  Google Scholar 

  • McMahon TA, Denison PJ (1979) Empirical atmospheric deposition parameters – a survey. Atmos Environ 13:571–585

    Article  CAS  Google Scholar 

  • Merlivat L (1978) Molecular diffusivities of H216O, HD16O, and H218O in gases. J Chem Phys 69:2864–2871

    Google Scholar 

  • Möller U, Schumann G (1970) Mechanisms of transport from the atmosphere to the earth\9s surface. J Geophys Res 75:3013–3019

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1973) Statistical Fluid Dynamics (2 Bände). MIT Press, Cambridge/Mass

    Google Scholar 

  • Nieuwstadt FTM, van Dop H (Hrsg) (1984) Atmospheric turbulence and air pollution modelling, 2. Aufl. Reidel, Dordrecht

    Google Scholar 

  • Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. Forsch Arb Ing-Wesen 361

    Google Scholar 

  • Panofsky HA (1973) Tower micrometerology. In: Haugen DA (Hrsg) Workshop on Micrometeorology. American Meteorological Society, Boston, S 151–176

    Google Scholar 

  • Pasquill F (1974) Atmospheric Diffusion. Wiley, Chichester

    Google Scholar 

  • Paulson CA (1970) The mathematical presentation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Priestley CHB (1959) Turbulent transfer in the lower atmosphere. University Chicago Press, Chicago

    Google Scholar 

  • Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z Angew Math Mech 31:208–219

    Article  Google Scholar 

  • Sehmel GA (1973) Particle eddy diffusivities and deposition velocities for isothermal flow and smooth surfaces. J Aerosol Sci 4:125–138

    Article  Google Scholar 

  • Sehmel GA, Sutter SL (1974) Particle deposition on a water surface as a function of particle diameter and air velocity. J Rech Atmos 8:911–918

    Google Scholar 

  • Taylor RJ (1956) Some measurements of heat flux at large negative Richardson numbers. Quart J Roy Meteorol Soc 82:89

    Article  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of vegetation. In: Monteith JL (Hrsg) Vegetation and the atmosphere, Bd 1. Academic Press, London, S 57–109

    Google Scholar 

  • Townsend AA (1962) Natural convection in the earth’s boundary layer. Quart J Roy Meteorol Soc 88:51

    Article  Google Scholar 

  • Trenberth KE, Large WG, Olson JG (1989) The effective drag coefficients for evaluating wind stress over the oceans. J Climate 2:1507–1516

    Article  Google Scholar 

  • Vielstich Z (1953) Der Zusammenhang zwischen Nernstscher Diffusionsschicht und Prandtlscher Strömungsgrenzschicht. Z Elektrochem 57:646–655

    Google Scholar 

  • Waggoner PE, Turner CE (1971) Referiert bei: Jarvis PG, James GB, Landsberg JJ (1975) Coniferous forest. In: Monteith JL (Hrsg) Vegetation in the Atmosphere, Bd 2. Academic Press, London, S 171–240

    Google Scholar 

  • Webb EK (1958) Vanishing potential temperature gradient in strong convection. Quart J Roy Meteorol Soc 84:118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Roedel, W., Wagner, T. (2017). Dynamik der bodennahen Luftschichten, Diffusion und Austausch in Bodennähe. In: Physik unserer Umwelt: Die Atmosphäre. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54258-3_7

Download citation

Publish with us

Policies and ethics