Skip to main content

Micromorphic Approach to Materials with Internal Length

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Continua with microstructure; Generalized continua; Higher order continua; Micromorphic approach to gradient elasticity; Micromorphic media; Plasticity and damage

Definitions

Micromorphic media are three-dimensional continua made of material points endowed with usual translational degrees of freedom and additional kinematical degrees of freedom accounting for the rotation and distortion of a triad of directors. The directors are related to an underlying microstructure (lattice directions in a crystal, fiber directions in a composite materials, etc.). Their transformation is represented by a generally noncompatible field of second rank generally nonsymmetric microdeformation tensors. More generally, the micromorphic approach consists in enriching the kinematics of the material point by additional degrees of freedom related to plastic strain, damage, or phase field variables. An essential feature of such theories is that the gradient of the micromorphic variable enters the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aifantis E (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326–330

    Article  Google Scholar 

  • Aifantis E (1987) The physics of plastic deformation. Int J Plast 3:211–248

    Article  Google Scholar 

  • Alibert J, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8:51–73

    Article  MathSciNet  Google Scholar 

  • Aslan O, Forest S (2011) The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: de Borst R, Ramm E (eds) Multiscale methods in computational mechanics. Lecture notes in applied and computational mechanics, vol 55. Springer, pp 135–154

    Google Scholar 

  • Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325

    Article  MathSciNet  Google Scholar 

  • Besson J, Cailletaud G, Chaboche JL, Forest S, Blétry M (2009) Non–linear mechanics of materials. Solid mechanics and its applications, vol 167. Springer, Berlin/Heidelberg

    Google Scholar 

  • Chen Y, Lee J (2003) Connecting molecular dynamics to micromorphic theory. (I) Instantaneous and averaged mechanical variables. Phys A 322:359–376

    Article  Google Scholar 

  • Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech A Solids 25:526–549

    Article  Google Scholar 

  • Enakoutsa K, Leblond J (2009) Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture. Eur J Mech A Solids 28:445–460

    Article  Google Scholar 

  • Engelen R, Geers M, Baaijens F (2003) Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int J Plast 19:403–433

    Article  Google Scholar 

  • Eringen A (1999) Microcontinuum field theories. Springer, New York

    Book  Google Scholar 

  • Eringen A, Suhubi E (1964) Nonlinear theory of simple microelastic solids. Int J Eng Sci 2(189–203):389–404

    Google Scholar 

  • Feld-Payet S, Chiaruttini V, Besson J, Feyel F (2015) A new marching ridges algorithm for crack path tracking in regularized media. Int J Solids Struct 71:57–69

    Article  Google Scholar 

  • Forest S (2009) The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J Eng Mech 135:117–131

    Article  Google Scholar 

  • Forest S (2012) Micromorphic media. In: Altenbach H, Eremeyev V (eds) Generalized continua – from the theory to engineering applications. CISM International Centre for Mechanical Sciences, courses and lectures, no. 541. Springer, pp 249–300

    Google Scholar 

  • Forest S (2014) Asymptotic analysis of heterogeneous micromorphic elastic solids. In: Hetnarski R (ed) Encyclopedia of thermal stresses. Springer, Dordrecht, pp 239–251

    Chapter  Google Scholar 

  • Forest S (2016) Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc R Soc A 472:20150755. https://doi.org/10.1098/rspa.2015.0755

    Article  MATH  Google Scholar 

  • Forest S, Sab K (2017) Finite deformation second order micromorphic theory and its relations to strain and stress gradient models. Math Mech Solids. https://doi.org/10.1177/1081286517720844

  • Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160:71–111

    Article  Google Scholar 

  • Forest S, Sievert R (2006) Nonlinear microstrain theories. Int J Solids Struct 43:7224–7245

    Article  MathSciNet  Google Scholar 

  • Forest S, Trinh DK (2011) Generalized continua and non–homogeneous boundary conditions in homogenization methods. ZAMM 91:90–109

    Article  Google Scholar 

  • Forest S, Blazy J, Chastel Y, Moussy F (2005) Continuum modelling of strain localization phenomena in metallic foams. J Mater Sci 40:5903–5910

    Article  Google Scholar 

  • Geers M, Rd B, Brekelmans W, Peerlings R (1998) On the use of local strain fields for the determination of the intrinsic length scale. J Phys IV 8:Pr8–167–174

    Google Scholar 

  • Germain P (1973) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25:556–575

    Article  Google Scholar 

  • Germain P, Nguyen Q, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020

    Article  Google Scholar 

  • Grammenoudis P, Tsakmakis C (2009) Micromorphic continuum part I: strain and stress tensors and their associated rates. Int J Non Linear Mech 44:943–956

    Article  Google Scholar 

  • Grammenoudis P, Tsakmakis C, Hofer D (2009) Micromorphic continuum part II: finite deformation plasticity coupled with damage. Int J Non Linear Mech 44:957–974

    Article  Google Scholar 

  • Hirschberger C, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity – theory and computation. Comput Methods Appl Mech Eng 196:4027–4044

    Article  MathSciNet  Google Scholar 

  • Hütter G (2017a) Homogenization of a cauchy continuum towards a micromorphic continuum. J Mech Phys Solids 99:394–408. https://doi.org/10.1016/j.jmps.2016.09.010

    Article  MathSciNet  Google Scholar 

  • Hütter G (2017b) A micromechanical gradient extension of Gurson’s model of ductile damage within the theory of microdilatational media. Int J Solids Struct 110–111:15–23. https://doi.org/10.1016/j.ijsolstr.2017.02.007

    Article  Google Scholar 

  • Kirchner N, Steinmann P (2005) A unifying treatise on variational principles for gradient and micromorphic continua. Philos Mag 85:3875–3895

    Article  Google Scholar 

  • Lazar M, Maugin GA (2007) On microcontinuum field theories: the eshelby stress tensor and incompatibility conditions. Philos Mag 87:3853–3870

    Article  Google Scholar 

  • Lorentz E, Besson J, Cano V (2008) Numerical simulation of ductile fracture with the Rousselier constitutive law. Comput Methods Appl Mech Eng 197:1965–1982

    Article  Google Scholar 

  • Mandel J (1973) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740

    Article  Google Scholar 

  • Maugin G (1999) Thermomechanics of nonlinear irreversible behaviors. World Scientific, Samuel Forest, Singapore

    Book  Google Scholar 

  • Mazière M, Forest S (2015) Strain gradient plasticity modeling and finite element simulation of lüders band formation and propagation. Contin Mech Thermodyn 27:83–104. https://doi.org/10.1007/s00161-013-0331-8

    Article  MathSciNet  MATH  Google Scholar 

  • Mazière M, Luis C, Marais A, Forest S, Gaspérini M (2017) Experimental and numerical analysis of the Lüders phenomenon in simple shear. Int J Solids Struct 106–107:305–314

    Article  Google Scholar 

  • Mindlin R (1964) Micro–structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  Google Scholar 

  • Mühlhaus H (1995) Continuum models for materials with microstructure. Wiley, Chichester

    MATH  Google Scholar 

  • Mühlhaus H, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37:271–283

    Article  Google Scholar 

  • Nassar H, He QC, Auffray N (2016) A generalized theory of elastodynamic homogenization for periodic media. Int J Solids Struct 84:139–146. https://doi.org/10.1016/j.ijsolstr.2016.01.022

    Article  Google Scholar 

  • Peerlings R, Geers M, Rd B, Brekelmans W (2001) A critical comparison of nonlocal and gradient–enhanced softening continua. Int J Solids Struct 38:7723–7746

    Article  Google Scholar 

  • Peerlings R, Massart T, Geers M (2004) A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput Methods Appl Mech Eng 193:3403–3417

    Article  Google Scholar 

  • Regueiro R (2010) On finite strain micromorphic elastoplasticity. Int J Solids Struct 47:786–800

    Article  Google Scholar 

  • Sansour C (1998a) A theory of the elastic–viscoplastic cosserat continuum. Arch Mech 50:577–597

    MATH  Google Scholar 

  • Sansour C (1998b) A unified concept of elastic–viscoplastic Cosserat and micromorphic continua. J Phys IV 8:Pr8–341–348

    Google Scholar 

  • Sansour C, Skatulla S, Zbib H (2010) A formulation for the micromorphic continuum at finite inelastic strains. Int J Solids Struct 47:1546–1554

    Article  Google Scholar 

  • Trinh DK, Jänicke R, Auffray N, Diebels S, Forest S (2012) Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multiscale Comput Eng 10:527–549. https://doi.org/10.1615/IntJMultCompEng.2012003105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forest, S. (2018). Micromorphic Approach to Materials with Internal Length. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics