Skip to main content

An Electrochemical Transdermal Patch for Permeation Enhancement

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement
  • 1413 Accesses

Abstract

A novel electrochemical patch is described that works by the hydrolysis of water in a hydrogel between two suitable electrodes that produces a strongly enhanced drug flux through the skin. This non-iontophoretic mechanism requires only a short voltage application (60 s) yet produces enhanced skin permeation over up to 5 h. In this chapter the design and formulation of the patch are reviewed. The results of an in vivo study on humans are also discussed in terms of a comparison with iontophoretic patches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Grden M, Lukaszewski M, Jerkiewicz G, Czerwinski A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598

    Article  CAS  Google Scholar 

  • Gürten A, Kayakirilmaz K, Yazici B, Erbil M (2003) The primary study on the effects of primer alcohols on the hydrogen evolution reaction on silver electrode. Int J Hydrog Energy 28:1083–1088

    Article  Google Scholar 

  • Guy R, Delgado-Charro M, Kalia Y (2001) Iontophoretic transport across the skin. Skin Pharmacol Appl Skin Physiol 14:35–40

    Article  CAS  PubMed  Google Scholar 

  • Hamann C, Vielstich W (2005) Electrochemistry. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Hegemann D, Balazs D (2007) Nanostructured textile surfaces: plasma deposition shows several advantages. NanoS 1:36–41

    Google Scholar 

  • Jewell L, Davis B (2006) Review of absorption and adsorption in the hydrogen-palladium system. Appl Catal A Gen 310:1–15

    Article  CAS  Google Scholar 

  • Lehmann K, Heinrich C, Heiss R (1988) Balanced anesthesia and patient-controlled postoperative analgesia with fentanyl: minimum effective concentrations, accumulation and acute tolerance. Acta Anaesthiol Belg 39:11–23

    CAS  Google Scholar 

  • Martin M, Lasia A (2008) Study of the hydrogen absorption in Pd in alkaline solution. Electrochim Acta 53:6317–6322

    Article  CAS  Google Scholar 

  • Murdan S (2003) Electroresponsive drug delivery from hydrogels. J Control Release 92:1–17

    Article  CAS  PubMed  Google Scholar 

  • Peng P, Sandler A (1999) A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology 90:576–599

    Article  CAS  PubMed  Google Scholar 

  • Pfister W (1997) Transdermal and dermal therapeutic systems: current status. In: Ghosh T, Pfister W, Yum S (eds) Transdermal and topical drug delivery systems. Interpharm, Buffalo Grove, pp 33–112

    Google Scholar 

  • Roy S, Flynn G (1990) Transdermal delivery of narcotic analgesics: pH, anatomical and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm Res 7:842–847

    Article  CAS  PubMed  Google Scholar 

  • Sathyan G, Jaskowiak J, Evashenk M, Gupta S (2005) Characterisation of the pharmacokinetics of the fentanyl HCl patient-controlled transdermal system (PCTS): effect of current magnitude and multiple-day dosing and comparison with iv fentanyl administration. Clin Pharmacokinet 44:7–15

    Article  CAS  PubMed  Google Scholar 

  • Schröder B, Nickel U, Meyer E, Lee G (2012a) Transdermal delivery using a novel electrochemical device, part 1: device design and in vitro release/permeation of fentanyl. J Pharm Sci 101(1):245–255

    Article  PubMed  Google Scholar 

  • Schröder B, Nickel U, Meyer E, Lee G (2012b) Transdermal delivery using a novel electrochemical device, part 2: in vivo study in humans. J Pharm Sci 101(6):2262–2268

    Article  PubMed  Google Scholar 

  • Scranton A, Rangarajan B, Klier J (1995) Biomedical applications of polyelectrolytes. Adv Poly Sci 122:1–54

    Article  CAS  Google Scholar 

  • Weast R (1985) Handbook of chemistry and physics, 66th edn. CRC Press, Florida, p D–152

    Google Scholar 

  • Woodhouse A, Mather L (2000) The minimum effective concentration of opioids: a revisitation with patient-controlled analgesia of fentanyl. Reg Anesth Pain Med 25:259–267

    CAS  PubMed  Google Scholar 

  • Yazici B, Tatli G, Galip H, Erbil M (1995) Investigation of suitable cathodes for the production of hydrogen gas by electrolysis. Int J Hydrog Energy 12:957–965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, G., Schröder, B., Nickel, U., Meyer, E. (2017). An Electrochemical Transdermal Patch for Permeation Enhancement. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics