Skip to main content

Magneto-Optical (MO) Characterization Tools for Chemically Prepared Magnetic Nanomaterials

  • Chapter
  • First Online:
Magnetic Characterization Techniques for Nanomaterials

Abstract

Magneto-optical (MO) techniques are sensitive and versatile tools for the study of magnetic nanomaterials. Interaction of polarized light with a magnetized medium brings information on the magnetic properties of the sample, thus making MO techniques a valid alternative to standard magnetometric techniques. On the other hand, spectroscopic degrees of freedom arising from the tuneability of the incoming photon energy give access to an additional set of information, inaccessible to other investigation methods.

Dedication

Dedicated to Herman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson AL (1986) Demonstrating single photon interference. Science 231:671

    Article  Google Scholar 

  2. Buckingham A, Stephens P (1966) Magnetic optical activity. Annu Rev Phys Chem 17:399–432

    Article  Google Scholar 

  3. Sessoli R, Gatteschi D, Caneschi A, Novak M (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    Article  Google Scholar 

  4. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. OUP, Oxford

    Book  Google Scholar 

  5. Tamura M, Nakazawa Y, Shiomi D, Nozawa K, Hosokoshi Y, Ishikawa M, Takahashi M, Kinoshita M (1991) Bulk ferromagnetism in the β-phase crystal of the p-nitrophenyl nitronyl nitroxide radical. Chem Phys Lett 186:401–404

    Article  Google Scholar 

  6. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383:145–147

    Google Scholar 

  7. Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonacchi D, Caneschi A, Gatteschi D, Biagi R, Del Pennino U, De Renzi V (2003) Direct observation of single‐molecule magnets organized on gold surfaces. Angew Chem Int Ed 42:1645–1648

    Article  Google Scholar 

  8. Condorelli GG, Motta A, Fragalà IL, Giannazzo F, Raineri V, Caneschi A, Gatteschi D (2004) Anchoring molecular magnets on the Si (100) surface. Angew Chem Int Ed 43:4081–4084

    Article  Google Scholar 

  9. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197

    Article  Google Scholar 

  10. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421

    Article  Google Scholar 

  11. McInnes EJL, Pidcock E, Oganesyan VS, Cheesman MR, Powell AK, Thomson AJ (2002) Optical detection of spin polarization in single-molecule magnets [Mn12O12 (O2CR) 16 (H2O) 4]. J Am Chem Soc 124:9219–9228

    Article  Google Scholar 

  12. Domingo N, Williamson B, Gómez-Segura J, Gerbier P, Ruiz-Molina D, Amabilino DB, Veciana J, Tejada J (2004) Magnetism of isolated Mn 12 single-molecule magnets detected by magnetic circular dichroism: observation of spin tunneling with a magneto-optical technique. Phys Rev B 69:052405

    Article  Google Scholar 

  13. Bogani L, Cavigli L, Gurioli M, Novak RL, Mannini M, Caneschi A, Pineider F, Sessoli R, Clemente‐León M, Coronado E (2007) Magneto‐optical investigations of nanostructured materials based on single‐molecule magnets monitor strong environmental effects. Adv Mater 19:3906–3911

    Article  Google Scholar 

  14. Mannini M, Sainctavit P, Sessoli R, Cartier dit Moulin C, Pineider F, Arrio MA, Cornia A, Gatteschi D (2008) XAS and XMCD investigation of Mn12 monolayers on gold. Chem Eur J 14:7530–7535

    Google Scholar 

  15. Mannini M, Pineider F, Sainctavit P, Joly L, Fraile‐Rodríguez A, Arrio MA, Cartier dit Moulin C, Wernsdorfer W, Cornia A, Gatteschi D (2009) X‐ray magnetic circular dichroism picks out single‐molecule magnets suitable for nanodevices. Adv Mater 21:167–171

    Article  Google Scholar 

  16. Novak R, Pineider F, de Julián Fernández C, Gorini L, Bogani L, Danieli C, Cavigli L, Cornia A, Sessoli R (2008) Magneto-optical studies on the molecular cluster Fe4 in different polymeric environments. Inorg Chim Acta 361:3970–3974

    Article  Google Scholar 

  17. Bradley JM, Thomson AJ, Inglis R, Milios CJ, Brechin EK, Piligkos S (2010) MCD spectroscopy of hexanuclear Mn (III) salicylaldoxime single-molecule magnets. Dalton Trans 39:9904–9911

    Article  Google Scholar 

  18. Timco GA, Faust TB, Tuna F, Winpenny RE (2011) Linking heterometallic rings for quantum information processing and amusement. Chem Soc Rev 40:3067–3075

    Article  Google Scholar 

  19. Kirchner N, Van Slageren J, Tsukerblat B, Waldmann O, Dressel M (2008) Antisymmetric exchange interactions in Ni 4 clusters. Phys Rev B 78:094426

    Article  Google Scholar 

  20. van Slageren J, Piligkos S, Neese F (2010) Magnetic circular dichroism spectroscopy on the Cr8 antiferromagnetic ring. Dalton Trans 39:4999–5004

    Article  Google Scholar 

  21. Coronado E, Makarewicz M, Prieto‐Ruiz JP, Prima‐García H, Romero FM (2011) Magneto‐optical properties of electrodeposited thin films of the molecule‐based magnet Cr5. 5 (CN) 12 · 11.5 H2O. Adv Mater 23:4323–4326

    Article  Google Scholar 

  22. Ishikawa N, Sugita M, Ishikawa T, Koshihara S-y, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695

    Article  Google Scholar 

  23. Gonidec M, Davies ES, McMaster J, Amabilino DB, Veciana J (2010) Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy. J Am Chem Soc 132:1756–1757

    Article  Google Scholar 

  24. Margheriti L, Chiappe D, Mannini M, Car PE, Sainctavit P, Arrio MA, de Mongeot FB, Cezar JC, Piras FM, Magnani A (2010) X‐ray detected magnetic hysteresis of thermally evaporated terbium double‐decker oriented films. Adv Mater 22:5488–5493

    Article  Google Scholar 

  25. Malavolti L, Mannini M, Car P-E, Campo G, Pineider F, Sessoli R (2013) Erratic magnetic hysteresis of TbPc 2 molecular nanomagnets. J Mater Chem C 1:2935–2942

    Article  Google Scholar 

  26. da Cunha TT, Jung J, Boulon ME, Campo G, Pointillart F, Pereira CL, Le Guennic B, Cador O, Bernot K, Pineider F, Golhen S, Ouahab L (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a Dy(III)-based single ion magnet. J Am Chem Soc 135:16332–16335

    Article  Google Scholar 

  27. Mack J, Stillman MJ, Kobayashi N (2007) Application of MCD spectroscopy to porphyrinoids. Coord Chem Rev 251:429–453

    Article  Google Scholar 

  28. Fronk M, Bräuer B, Kortus J, Schmidt O, Zahn D, Salvan G (2009) Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy. Phys Rev B 79:235305

    Article  Google Scholar 

  29. Birnbaum T, Hahn T, Martin C, Kortus J, Fronk M, Lungwitz F, Zahn DR, Salvan G (2014) Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J Phys Condens Matter 26:104201

    Article  Google Scholar 

  30. Bräuer BR, Fronk M, Lehmann D, Zahn DR, Salvan G (2009) Magneto-optical Kerr effect spectroscopy: a sensitive tool for investigating the molecular orientation in organic semiconductor films. J Phys Chem B 113:14957–14961

    Article  Google Scholar 

  31. Ishii K, Ozawa K (2009) Local-field-induced effective magnetic hysteresis of molecular magneto-optical effects in the visible region at room temperature: phthalocyanine thin films on ferromagnetic inorganic substrates. J Phys Chem C 113:18897–18901

    Article  Google Scholar 

  32. Wende H, Bernien M, Luo J, Sorg C, Ponpandian N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P (2007) Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat Mater 6:516–520

    Article  Google Scholar 

  33. Fantechi E, Campo G, Carta D, Corrias A, de Julián Fernández C, Gatteschi D, Innocenti C, Pineider F, Rugi F, Sangregorio C (2012) Exploring the effect of Co doping in fine maghemite nanoparticles. J Phys Chem C 116:8261–8270

    Article  Google Scholar 

  34. Fontijn W, Van der Zaag P, Devillers M, Brabers V, Metselaar R (1997) Optical and magneto-optical polar Kerr spectra of Fe 3 O 4 and Mg 2 + -or Al 3 + -substituted Fe 3 O 4. Phys Rev B 56:5432

    Article  Google Scholar 

  35. Jain PK, Xiao Y, Walsworth R, Cohen AE (2009) Surface plasmon resonance enhanced magneto-optics (SuPREMO): faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett 9:1644–1650

    Article  Google Scholar 

  36. He Y, Miao Y, Li C, Wang S, Cao L, Xie S, Yang G, Zou B, Burda C (2005) Size and structure effect on optical transitions of iron oxide nanocrystals. Phys Rev B 71:125411

    Article  Google Scholar 

  37. Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470

    Article  Google Scholar 

  38. Campo G, Pineider F, Bonanni V, Albino M, Caneschi A, de Julián Fernández C, Innocenti C, Sangregorio C (2015) Magneto-optical probe for investigation of multiphase Fe oxide nanosystems. Chem Mater 27:466–473

    Article  Google Scholar 

  39. Ferré J, Meyer P, Nyvlt M, Visnovsky S, Renard D (1997) Magnetooptic depth sensitivity in a simple ultrathin film structure. J Magn Magn Mater 165:92–95

    Article  Google Scholar 

  40. Lin C, Tseng Y, Ovchinnikov S, Ivantsov R, Edelman I, Fedorov A, Kuzubov A, Fedorov D, Starchikov S, Lyubutin I (2014) Fe3S4 and Fe3O4 magnetic nanocrystals: magneto-optical and Mössbauer spectroscopy study. Mater Res Express 1:025033

    Article  Google Scholar 

  41. Bentivegna F, Nyvlt M, Ferré J, Jamet J, Brun A, Visnovsky S, Urban R (1999) Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: optical and magneto-optical properties. J Appl Phys 85:2270–2278. Dobrowolska

    Article  Google Scholar 

  42. Postava K, Sveklo I, Tekielak M, Mazalski P, Maziewski A, Stupakiewicz A, Urbaniak M, Szymanski B, Stobiecki F (2008) Material selective sensitivity of magneto-optical Kerr effect in NiFe/Au/Co/Au periodic multilayers. Magn IEEE Trans 44:3261–3264

    Article  Google Scholar 

  43. Li W, Fronk M, Albrecht M, Franke M, Zahn DR, Salvan G (2014) Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system. Opt Express 22:18454–18463

    Article  Google Scholar 

  44. Chiancone E, Ceci P, Ilari A, Ribacchi F, Stefanini S (2004) Iron and proteins for iron storage and detoxification. Biometals 17:197–202

    Article  Google Scholar 

  45. Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068

    Article  Google Scholar 

  46. Pankowska M, Dobek A (2009) Linear and nonlinear magneto-optics of ferritin. J Chem Phys 131:015105

    Article  Google Scholar 

  47. Koralewski M, Pochylski M, Mitróová Z, Timko M, Kopčanský P, Melníková L (2011) Magnetic birefringence of natural and synthetic ferritin. J Magn Magn Mater 323:2413–2417

    Article  Google Scholar 

  48. Koralewski M, Pochylski M, Gierszewski J (2013) Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension. J Nanopart Res 15:1–20

    Article  Google Scholar 

  49. Pascu O, Caicedo JM, Fontcuberta J, Herranz G, Roig A (2010) Magneto-optical characterization of colloidal dispersions. application to nickel nanoparticles. Langmuir 26:12548–12552

    Article  Google Scholar 

  50. Lopez-Santiago A, Gangopadhyay P, Thomas J, Norwood R, Persoons A, Peyghambarian N (2009) Faraday rotation in magnetite-polymethylmethacrylate core@shell nanocomposites with high optical quality. Appl Phys Lett 95:143302

    Article  Google Scholar 

  51. Amekura H, Takeda Y, Kishimoto N (2004) Magneto-optical Kerr spectra of nickel nanoparticles in silica glass fabricated by negative-ion implantation. Thin Solid Films 464:268–272

    Article  Google Scholar 

  52. Edelman I, Petrov D, Ivantsov R, Zharkov S, Velikanov D, Gumarov G, Nuzhdin V, Valeev V, Stepanov A (2013) Study of morphology, magnetic properties, and visible magnetic circular dichroism of Ni nanoparticles synthesized in SiO 2 by ion implantation. Phys Rev B 87:115435

    Article  Google Scholar 

  53. Salvan G, Pacurariu R, Li W, Fronk M, Rosu D, Zahn D, Schubert S, Radons G, Schulze S, Hietschold M (2011) Nickel nanoparticles in fullerene matrix fabricated by co-evaporation: structural, magnetic, and magneto-optical properties. Appl Phys A 103:433–438

    Article  Google Scholar 

  54. Dietl T (2010) A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965–974

    Article  Google Scholar 

  55. Ando K (2006) Seeking room-temperature ferromagnetic semiconductors. Science 312:1883–1885

    Article  Google Scholar 

  56. Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:R29–R64

    Article  Google Scholar 

  57. Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys 86:187

    Article  Google Scholar 

  58. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365

    Article  Google Scholar 

  59. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  Google Scholar 

  60. Kolesnik S, Dabrowski B, Mais J (2004) Structural and magnetic properties of transition metal substituted ZnO. J Appl Phys 95:2582–2586

    Article  Google Scholar 

  61. Singh S, Rama N, Sethupathi K, Rao MR (2008) Correlation between electrical transport, optical, and magnetic properties of transition metal ion doped ZnO. J Appl Phys 103:07D108

    Article  Google Scholar 

  62. Ramachandran S, Tiwari A, Narayan J (2004) Zn0. 9Co0. 1O-based diluted magnetic semiconducting thin films. Appl Phys Lett 84:5255–5257

    Article  Google Scholar 

  63. Ball P (2000) Meet the spin doctors…. Nature 404:918–920

    Article  Google Scholar 

  64. Theodoropoulou N, Hebard A, Overberg M, Abernathy C, Pearton S, Chu S, Wilson R (2002) Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn) P: C. Phys Rev Lett 89:107203

    Article  Google Scholar 

  65. Thaler G, Overberg M, Gila B, Frazier R, Abernathy C, Pearton S, Lee J, Lee S, Park Y, Khim Z (2002) Magnetic properties of n-GaMnN thin films. Appl Phys Lett 80:3964–3966

    Article  Google Scholar 

  66. Edmonds K, Bogusławski P, Wang K, Campion R, Novikov S, Farley N, Gallagher B, Foxon C, Sawicki M, Dietl T (2004) Mn interstitial diffusion in (G a, M n) A s. Phys Rev Lett 92:037201

    Article  Google Scholar 

  67. Coey J, Venkatesan M, Fitzgerald C (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Article  Google Scholar 

  68. Gaj JA, Kossut J (2010) Introduction to the Physics of Diluted Magnetic Semiconductors Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  69. Gaj J, Gałazka R, Nawrocki M (1978) Giant exciton Faraday rotation in Cd 1− x Mn x Te mixed crystals. Solid State Commun 25:193–195

    Article  Google Scholar 

  70. Kuno M, Nirmal M, Bawendi M, Efros A, Rosen M (1998) Magnetic circular dichroism study of CdSe quantum dots. J Chem Phys 108:4242–4247

    Article  Google Scholar 

  71. Beaulac R, Ochsenbein ST, Gamelin DR, Klimov V (2010) Colloidal transition-metal-doped quantum dots. In: Klimov VI (ed) Nanocrystal quantum dots, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  72. Ando K, Saito H, Zayets V (2011) Anomalous Zeeman splittings of II–VI diluted magnetic semiconductors at L-critical points. J Appl Phys 109:07C304

    Article  Google Scholar 

  73. Ando K, Saito H, Debnath M, Zayets V, Bhattacharjee A (2008) Zeeman splittings near the L point of the Brillouin zone in zinc-blende semiconductors. Phys Rev B 77:125123

    Article  Google Scholar 

  74. Hartmann T, Ye S, Klar P, Heimbrodt W, Lampalzer M, Stolz W, Kurz T, Loidl A, Von Nidda H-AK, Wolverson D (2004) Tuning of the average p-d exchange in (Ga, Mn) As by modification of the Mn electronic structure. Phys Rev B 70:233201

    Article  Google Scholar 

  75. Ando K, Saito H, Agarwal K, Debnath M, Zayets V (2008) Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic Ga 1-x Mn x As: impurity bands inside the band gap. Phys Rev Lett 100:067204

    Article  Google Scholar 

  76. Berciu M, Chakarvorty R, Zhou Y, Alam M, Traudt K, Jakiela R, Barcz A, Wojtowicz T, Liu X, Furdyna J (2009) Origin of magnetic circular dichroism in GaMnAs: giant Zeeman splitting versus spin dependent density of states. Phys Rev Lett 102:247202

    Article  Google Scholar 

  77. Dobrowolska M, Tivakornsasithorn K, Liu X, Furdyna J, Berciu M, Yu K, Walukiewicz W (2012) Controlling the Curie temperature in (Ga, Mn) As through location of the Fermi level within the impurity band. Nat Mater 11:444–449

    Article  Google Scholar 

  78. Yu JH, Liu X, Kweon KE, Joo J, Park J, Ko K-T, Lee DW, Shen S, Tivakornsasithorn K, Son JS (2010) Giant Zeeman splitting in nucleation-controlled doped CdSe: Mn2+ quantum nanoribbons. Nat Mater 9:47–53

    Article  Google Scholar 

  79. Beaulac R, Archer PI, Liu X, Lee S, Salley GM, Dobrowolska M, Furdyna JK, Gamelin DR (2008) Spin-polarizable excitonic luminescence in colloidal Mn2 + -doped CdSe quantum dots. Nano Lett 8:1197–1201

    Article  Google Scholar 

  80. Balet L, Ivanov S, Piryatinski A, Achermann M, Klimov V (2004) Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett 4:1485–1488

    Article  Google Scholar 

  81. Bussian DA, Crooker SA, Yin M, Brynda M, Efros AL, Klimov VI (2009) Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nat Mater 8:35–40

    Article  Google Scholar 

  82. Vlaskin VA, Beaulac R, Gamelin DR (2009) Dopant − carrier magnetic exchange coupling in colloidal inverted core/shell semiconductor nanocrystals. Nano Lett 9:4376–4382

    Article  Google Scholar 

  83. Nawrocki M, Rubo YG, Lascaray J, Coquillat D (1995) Suppression of the Auger recombination due to spin polarization of excess carriers and Mn 2+ ions in the semimagnetic semiconductor Cd 0.95 Mn 0.05 S. Phys Rev B 52:R2241

    Article  Google Scholar 

  84. Viswanatha R, Pietryga JM, Klimov VI, Crooker SA (2011) Spin-polarized Mn 2+ emission from mn-doped colloidal nanocrystals. Phys Rev Lett 107:067402

    Article  Google Scholar 

  85. Viswanatha R, Brovelli S, Pandey A, Crooker SA, Klimov VI (2011) Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett 11:4753–4758

    Article  Google Scholar 

  86. Pandey A, Brovelli S, Viswanatha R, Li L, Pietryga J, Klimov V, Crooker S (2012) Long-lived photoinduced magnetization in copper-doped ZnSe-CdSe core@shell nanocrystals. Nat Nanotechnol 7:792–797

    Article  Google Scholar 

  87. Bhattacharjee A (1994) Orbital exchange in diluted magnetic semiconductors. J Cryst Growth 138:895–899

    Article  Google Scholar 

  88. Kossut J (2012) Diluted magnetic semiconductors: copper joins the family. Nat Nanotechnol 7:774–775

    Article  Google Scholar 

  89. Farvid SS, Hegde M, Radovanovic PV (2013) Influence of the host lattice electronic structure on dilute magnetic interactions in polymorphic Cr (III)-doped In2O3 nanocrystals. Chem Mater 25:233–244

    Article  Google Scholar 

  90. Farvid SS, Sabergharesou T, Hutfluss LN, Hegde M, Prouzet E, Radovanovic PV (2014) Evidence of charge-transfer ferromagnetism in transparent diluted magnetic oxide nanocrystals: switching the mechanism of magnetic interactions. J Am Chem Soc 136:7669–7679

    Article  Google Scholar 

  91. Tanaka A, Kamikubo H, Kataoka M, Hasegawa Y, Kawai T (2010) Size-controlled aggregation of cube-shaped EuS nanocrystals with magneto-optic properties in solution phase. Langmuir 27:104–108

    Article  Google Scholar 

  92. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442

    Article  Google Scholar 

  93. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  Google Scholar 

  94. Armelles G, Cebollada A, García‐Martín A, González MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10–35

    Article  Google Scholar 

  95. Armelles G, Cebollada A, García-Martín A, García-Martín JM, González MU, González-Díaz JB, Ferreiro-Vila E, Torrado J (2009) Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. J Opt A Pure Appl Opt 11:114023

    Article  Google Scholar 

  96. Zaitoun MA, Mason WR, Lin CT (2001) Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K. J Phys Chem B 105:6780–6784

    Article  Google Scholar 

  97. Artemyev M, Krutokhvostov R, Melnikau D, Oleinikov V, Sukhanova A, Nabiev I (2012) Low-field magnetic circular dichroism in silver and gold colloidal nanoparticles of different sizes, shapes, and aggregation states. In: SPIE nanoscience + engineering. International Society for Optics and Photonics, Bellingham WA, USA, pp 845729–845729-845710

    Google Scholar 

  98. Sokolov A, Ovchinnikov SGE, Zabluda V, Kal’sin A, Zubavichus YV (2013) Magnetic circular dichroism and the nature of ferromagnetism in colloidal gold nanoparticles. JETP Lett 97:98–101

    Article  Google Scholar 

  99. Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244–5258

    Article  Google Scholar 

  100. Pineider F, Campo G, Bonanni V, Fernandez Cde J, Mattei G, Caneschi A, Gatteschi D, Sangregorio C (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13:4785–4789

    Article  Google Scholar 

  101. Mayergoyz I, McAvoy P, Lang G, Bowen D, Krafft C (2009) Excitation and dephasing of circularly polarized plasmon modes in spherical nanoshells for application in all-optical magnetic recording. J Appl Phys 105:07B904

    Article  Google Scholar 

  102. Gu Y, Kornev KG (2010) Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites. JOSA B 27:2165–2173

    Article  Google Scholar 

  103. Maccaferri N, Gregorczyk KE, de Oliveira TV, Kataja M, van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M, Vavassori P (2015) Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat Commun 6150:1–8

    Google Scholar 

  104. Ishikawa Y, Yao H (2014) Surface magnetoplasmons in silver nanoparticles: apparent magnetic-field enhancement manifested by simultaneous deconvolution of UV–vis absorption and MCD spectra. Chem Phys Lett 609:93–97

    Article  Google Scholar 

  105. Sepúlveda B, González-Díaz JB, García-Martín A, Lechuga LM, Armelles G (2010) Plasmon-induced magneto-optical activity in nanosized gold disks. Phys Rev Lett 104:147401

    Article  Google Scholar 

  106. Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zäch M, Kasemo B (2007) Hole–mask colloidal lithography. Adv Mater 19:4297

    Article  Google Scholar 

  107. Chen J, Albella P, Pirzadeh Z, Alonso‐González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P (2011) Plasmonic nickel nanoantennas. Small 7:2341–2347

    Article  Google Scholar 

  108. Bonanni V, Bonetti S, Pakizeh T, Pirzadeh Z, Chen J, Nogués J, Vavassori P, Hillenbrand R, Åkerman J, Dmitriev A (2011) Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett 11:5333–5338

    Article  Google Scholar 

  109. Maccaferri N, González-Díaz JB, Bonetti S, Berger A, Kataja M, Van Dijken S, Nogués J, Bonanni V, Pirzadeh Z, Dmitriev A (2013) Polarizability and magnetoplasmonic properties of magnetic general nanoellipsoids. Opt Express 21:9875–9889

    Article  Google Scholar 

  110. Maccaferri N, Kataja M, Bonanni V, Bonetti S, Pirzadeh Z, Dmitriev A, van Dijken S, Åkerman J, Vavassori P (2014) Effects of a non‐absorbing substrate on the magneto‐optical Kerr response of plasmonic ferromagnetic nanodisks. Phys Status Solidi (a) 211:1067–1075

    Google Scholar 

  111. Lodewijks K, Maccaferri N, Pakizeh T, Dumas RK, Zubritskaya I, Åkerman J, Vavassori P, Dmitriev A (2014) Magnetoplasmonic design rules for active magneto-optics. Nano Lett 14:7207–7214

    Google Scholar 

  112. Papaioannou ET, Kapaklis V, Patoka P, Giersig M, Fumagalli P, García-Martín A, Ferreiro-Vila E, Ctistis G (2010) Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry. Phys Rev B 81:054424

    Article  Google Scholar 

  113. Papaioannou ET, Kapaklis V, Melander E, Hjörvarsson B, Pappas SD, Patoka P, Giersig M, Fumagalli P, Garcia-Martin A, Ctistis G (2011) Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays. Opt Express 19:23867–23877

    Article  Google Scholar 

  114. Valev VK, Silhanek AV, Gillijns W, Jeyaram Y, Paddubrouskaya H, Volodin A, Biris CG, Panoiu NC, Clercq BD, Ameloot M, Aktsipetrov OA, Moshchalkov VV, Verbiest T (2011) Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5:91–96

    Article  Google Scholar 

  115. González-Díaz JB, García-Martín A, García-Martín JM, Cebollada A, Armelles G, Sepúlveda B, Alaverdyan Y, Käll M (2008) Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4:202–205

    Article  Google Scholar 

  116. Toal B, McMillen M, Murphy A, Hendren W, Arredondo M, Pollard R (2014) Optical and magneto-optical properties of gold core cobalt shell magnetoplasmonic nanowire arrays. Nanoscale 6:12905–12911

    Article  Google Scholar 

  117. Armelles G, Cebollada A, García-Martín A, González MU, García F, Meneses-Rodríguez D, de Sousa N, Froufe-Pérez L (2013) Mimicking electromagnetically induced transparency in the magneto-optical activity of magnetoplasmonic nanoresonators. Opt Express 21:27356–27370

    Article  Google Scholar 

  118. de Sousa N, Froufe-Pérez L, Armelles G, Cebollada A, González M, García F, Meneses-Rodríguez D, García-Martín A (2014) Interaction effects on the magneto-optical response of magnetoplasmonic dimers. Phys Rev B 89:205419

    Article  Google Scholar 

  119. Armelles G, Caballero B, Prieto P, García F, Cebollada A, González MU, García-Martin A (2014) Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale 6:3737–3741

    Article  Google Scholar 

  120. Train C, Gheorghe R, Krstic V, Chamoreau L-M, Ovanesyan NS, Rikken GL, Gruselle M, Verdaguer M (2008) Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nat Mater 7:729–734

    Article  Google Scholar 

  121. Sessoli R, Boulon M-E, Caneschi A, Mannini M, Poggini L, Wilhelm F, Rogalev A (2014) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74

    Google Scholar 

  122. Wagnière GH (2008) On chirality and the universal asymmetry: reflections on image and mirror image. Wiley. Hoboken, NJ, USA

    Google Scholar 

  123. Armelles G, Caballero B, Cebollada A, Garcia-Martin A, Meneses-Rodríguez D (2015) Magnetic field modification of optical magnetic dipoles. Nano Lett 15:2045–2049

    Article  Google Scholar 

  124. Shemer G, Markovich G (2002) Enhancement of magneto-optical effects in magnetite nanocrystals near gold surfaces. J Phys Chem B 106:9195–9197

    Article  Google Scholar 

  125. Wang L, Yang K, Clavero C, Nelson A, Carroll K, Carpenter E, Lukaszew R (2010) Localized surface plasmon resonance enhanced magneto-optical activity in core@shell Fe–Ag nanoparticles. J Appl Phys 107:09B303

    Article  Google Scholar 

  126. Wang L, Clavero C, Huba Z, Carroll KJ, Carpenter EE, Gu D, Lukaszew RA (2011) Plasmonics and enhanced magneto-optics in core − shell Co − Ag nanoparticles. Nano Lett 11:1237–1240

    Article  Google Scholar 

  127. Li Y, Zhang Q, Nurmikko AV, Sun S (2005) Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett 5:1689–1692

    Article  Google Scholar 

  128. Tomita S, Takeshi K, Shigeru T, Satoshi I, Minoru F, Shinji H (2006) Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles. Phys Rev Lett 96:167402

    Article  Google Scholar 

  129. Du GX, Mori T, Saito S, Takahashi M (2010) Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Phys Rev B 82:161403

    Article  Google Scholar 

  130. Meneses‐Rodríguez D, Ferreiro‐Vila E, Prieto P, Anguita J, González MU, García‐Martín JM, Cebollada A, García‐Martín A, Armelles G (2011) Probing the electromagnetic field distribution within a metallic nanodisk. Small 7:3317–3323

    Article  Google Scholar 

  131. Varytis P, Stefanou N, Christofi A, Papanikolaou N (2015) Strong circular dichroism of core-shell magnetoplasmonic nanoparticles. J Opt Soc Am B 32:1063–1069.

    Article  Google Scholar 

Download references

Acknowledgement

The financial support from the European Research Council through the Advanced Grant “MolNanoMas” (267746) and from the Italian MIUR through FIRB project “NanoPlasMag” (RBFR10OAI0) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pineider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pineider, F., Sangregorio, C. (2017). Magneto-Optical (MO) Characterization Tools for Chemically Prepared Magnetic Nanomaterials. In: Kumar, C. (eds) Magnetic Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_14

Download citation

Publish with us

Policies and ethics