Skip to main content

Chromatic Dispersion

  • Chapter
  • First Online:
Fiber Optics
  • 2695 Accesses

Abstract

A light signal propagating in an optical fiber is subject to a variety of ways in which it can get distorted. Many of these are based on different propagation velocities for different parts of the signal. After such distortion, there is a risk that the signal arrives at the receiver in such a mangled form that it may be impossible to correctly decipher it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Comité Consultatif International Télégraphique et Téléphonique. This committee is now called ITU-T, a subunit of the International Telecommunication Union, which is a United Nations agency for information and communication technology issues.

  2. 2.

    In [7] a linear interpolation is suggested, but does not fit quite as well.

References

  1. Fibercore Limited, Fibercore House, Chilworth Science Park, SO16 7QQ (UK). See www.fibercore.com.

  2. Schott AG, Mainz (Germany): Optical Glass Catalog. Available for download at www.schott.com/advanced_optics/english/download/schott-optical-glass-collection-datasheets-july-2015-eng.pdf

  3. E. E. Basch (Hrsg.), Optical-Fiber Transmission, Howard W. Sams & Co., Indianapolis, IN (1987)

    Google Scholar 

  4. T. A. Birks, J. C. Knight, P. J. St. Russell, Endlessly Single-Mode Photonic Crystal Fiber, Optics. Letters 22, 961 (1997)

    Article  ADS  Google Scholar 

  5. A. Bjarklev, J. Broeng, A. Sanchez Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  6. M. Born, E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  7. J. M. Fini, Microstructure Fibres for Optical Sensing in Gases and Liquids, Measurement Science Technology 15, 1120 (2004)

    Article  ADS  Google Scholar 

  8. D. Gloge, Weakly Guiding Fibers, Applied Optics 10, 2252 (1971)

    Article  ADS  Google Scholar 

  9. J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  10. S. G. Johnson, J. D. Joannopoulos, Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis, Optics Express 8, 173 (2001)

    Article  ADS  Google Scholar 

  11. J. C. Knight, Photonic Crystal Fibres, Nature 424, 847 (2003)

    Article  ADS  Google Scholar 

  12. Boris T. Kuhlmey, Ross C. McPhedran, C. Martijn de Sterke, Modal Cutoff in Microstructured Optical Fibers, Optical Letters 27, 1684 (2002)

    Google Scholar 

  13. Ch. Mahnke, F. Mitschke, A useful approximation for the cladding index of holey fibers, Applied Physics B 99, 241 (2010)

    Article  Google Scholar 

  14. S. E. Miller, A. G. Chinoweth (Eds.), Optical Fiber Telecommunications II, Academic Press, London (1988)

    Google Scholar 

  15. M. Monerie, Propagation in Doubly-Clad Single-Mode Fibers, IEEE Transactions in Quantum Electronics QE-18, 535 (1982)

    Article  ADS  Google Scholar 

  16. T. M. Monro, P. J. Bennett, N. G. R. Broderick, D. J. Richardson, Holey Fibers with Random Cladding Distribution, Optics Letters 25, 206 (2000)

    Article  ADS  Google Scholar 

  17. E.-G. Neumann, Single Mode Fibers, Springer Series in Optical Sciences Vol. 57, Springer-Verlag, Berlin (1988)

    Google Scholar 

  18. P. J. St. Russell, Photonic Crystal Fibers, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  19. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, G. Steinmeyer, A Chirped Photonic-Crystal Fibre, Nature Photonics 2, 679 (2008)

    Article  ADS  Google Scholar 

  20. E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms, Physical Review Letters 67, 2295 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitschke, F. (2016). Chromatic Dispersion. In: Fiber Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52764-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52764-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52762-7

  • Online ISBN: 978-3-662-52764-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics