Skip to main content
  • 3506 Accesses

Zusammenfassung

Kap. 5 beschreibt die Forschungsthemen zum Schwerpunkt Tracking. Darunter ist das Erfassen der Position und Orientierung von Objekten bzw. des Anwenders im dreidimensionalen Raum zu verstehen. Die Arbeiten bilden damit die Grundlage für darauf aufbauende Funktionen wie beispielsweise die lagekorrekte Einblendung zusätzlicher Informationen oder die intuitive Interaktion durch Gesten. Neben Ansätzen zur Weiterentwicklung der Algorithmen des markerlosen Trackings werden ergänzende Sensoriken wie Wegaufnehmer an Robotern, Inertialsensoriken an Kameras betrachtet. Ein weiterer Ansatz untersucht die Hinzunahme von CAD-Daten zur Verbesserung des bildbasierten Trackings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IEEE Conference on Computer Vision and Pattern Recognition.

  2. 2.

    Springer International Journal of Computer Vision.

  3. 3.

    IEEE Transactions of Pattern Recognition and Machine Intelligence.

  4. 4.

    European Conference of Computer Vision.

Literatur

  1. Harris, C.; Stephens, M.: “A combined corner and edge detector,” in Alvey Vision Conference, 1988, S. 147–151.

    Google Scholar 

  2. Shi, J.; Tomasi, C.: “Good features to track,” in IEEE Proc. Computer Vision and Pattern Recognition (CVPR), 1994, S. 593–600.

    Google Scholar 

  3. Beaudet, P.-R.: “Rotationally invariant image operators,” in Proc. Intl. Joint Conference on Pattern Recognition, 1978, S. 579–583.

    Google Scholar 

  4. Lowe, D.: “Distinctive image features from scale-invariant keypoints,” Intl. J. of Computer Vision (IJCV), vol. 2, no. 60, S. 91–110, 2004.

    Google Scholar 

  5. Bay, H.; Tuytelaars, T., Van Gool, L.: “SURF: Speeded up robust features,” in Proc. European Conference on Computer Vision (ECCV), 2006, S. 404–417.

    Google Scholar 

  6. Smith, S.M.; Brady, J.M.: “SUSAN — A new approach to low level image processing,” Intl. J. of Computer Vision (IJCV), vol. 23, no. 34, S. 45–78, 1997.

    Google Scholar 

  7. Rosten, E.; Drummond, T.: „Machine learning for high-speed corner detection,“ in Proc. European Conference on Computer Vision (ECCV), 2006, S. 430–443.

    Google Scholar 

  8. Tuytelaars, T.; Mikolajczyk, K.: “Local Invariant Feature Detectors: A Survey,” Computer Graphics and Vision (CGV), vol. 3, no. 3, S. 177–280, 2007.

    Google Scholar 

  9. Mikolajczyk, K.; Schmid, C.: “A performance evaluation of local descriptors,” IEEE T Pattern Analysis and Machine Intelligence, vol. 27, no. 10, S. 1615–1630, 2005.

    Google Scholar 

  10. Lepetit, V.; Fua, P.: “Monocular Model-Based 3D Tracking of Rigid Objects: A Survey,” Computer Graphics and Vision (CGV), vol. 1, no. 1, S. 1–89, 2005.

    Google Scholar 

  11. Dalal, N.; Triggs, B.: “Histograms of oriented gradients for human detection,” in IEEE Proc. Conf. on Computer Vision and Pattern Recognition (CVPR), 2005, S. 886–893.

    Google Scholar 

  12. Lepetit, V.; Fua, P.: “Keypoint recognition using randomized trees,” IEEE T. on Pattern Analysis and Machine Intelligence (PAMI), vol. 28, no. 9, S. 1465–1479, 2006.

    Google Scholar 

  13. Taylor, S.; Rosten, E.; Drummond, T.: “Robust feature matching in 2.3 µs,” in IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2009, S. 15–22.

    Google Scholar 

  14. Lucas, B.; Kanade, T.: “An iterative image registration technique with an application to stereo vision,” in Proc. Intl. Joint Conference on Artificial Intelligence, 1981, S. 674–679.

    Google Scholar 

  15. Baker, S.; Matthews, I.: “Lucas-Kanade 20 Years On: A Unifying Framework,” Intl. J. of Computer Vision (IJCV), vol. 56, no. 3, S. 221–255, 2004.

    Google Scholar 

  16. Bleser, G.; Wuest, H.; Stricker, D.:”Online camera pose estimation in partially known and dynamic scenes,” in IEEE/ACM Intl. Symposium on Mixed and Augmented Reality, 2006, S. 56–65.

    Google Scholar 

  17. Benhimane, S.; Malis, E.: “Real-time image-based tracking of planes using Efficient Second-order Minimization,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2004, S. 943–948.

    Google Scholar 

  18. Hartley, R.; Zisserman, A.: Multiple View Geometry, 2nd ed. Cambridge University Press, 2003.

    Google Scholar 

  19. Gennery, D.B.: “Visual Tracking of Known Three-Dimensional Objects,” Intl. J. of Computer Vision, vol. 7, no. 1, S. 243–-270, 1992.

    Google Scholar 

  20. Kalman, R.E.: “A New Approach to Linear Filtering and Prediction Problems,” T. of the ASME–J. of Basic Engineering, vol. 82, no. Series D, S. 35–45, 1960.

    Google Scholar 

  21. Thrun, S.; Burgard, W.; Fox, D.: Probabilistic robotics. Cambridge MIT Press, 2005.

    Google Scholar 

  22. Wuest, H.; Wientapper, F.; Stricker, D.: “Adaptable model-based tracking using analysis-by-synthesis techniques,” in Proc. Intl. Conf. on Computer Analysis of Images and Patterns (CAIP), 2007, S. 20–27.

    Google Scholar 

  23. Hartley, R.I.; Sturm, P.: “Triangulation,” Computer Vision and Image Understanding, vol. 68, no. 2, S. 146–157, 1997.

    Google Scholar 

  24. Jiang, B.; Neumann, U.: “Extendible tracking by line auto-calibration,” in IEEE/ACM Intl. Symposium on Augmented Reality (ISAR), 2001, S. 97–103.

    Google Scholar 

  25. Davison, A.J.; Mayol, W.W.; Murray, D.W.: “Real-time localization and mapping with wearable active vision,” in IEEE/ACM Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2003, S. 18–27.

    Google Scholar 

  26. Davison, A.J.; Reid, I. D.; Molton, N. D.; Stasse, O.: “MonoSLAM: Real-Time Single Camera SLAM,” IEEE T. on Pattern Analysis and Machine Intelligence (PAMI), vol. 29, no. 6, S. 1052–1067, 2007.

    Google Scholar 

  27. Triggs, B.; McLauchlan, P. F.; Richard, R.-I.; Hartley, I.; Fitzgibbon, A. W.: “Bundle Adjustment — A Modern Synthesis,” Proc. Intl. Workshop on Vision Algorithms: Theory and Practice, S. 298–372, 2000.

    Google Scholar 

  28. Engels, C.; Stewénius, H.; Nistér, D.: “Bundle Adjustment Rules,” in Photogrammetric Computer Vision (PCV), 2006.

    Google Scholar 

  29. Lourakis, M. I. A.; Argyros, A. A.: “SBA: A software package for generic sparse bundle adjustment,” ACM T. on Mathematical Software (TOMS), vol. 36, no. 1, 2009.

    Google Scholar 

  30. Mouragnon, A.; Lhuillier, M.; Dhome, M.; Dekeyser, F.; Sayd, P.: “Generic and real-time structure from motion using local bundle adjustment,” Image and Vision Computing (IVC), vol. 27, no. 8, S. 1178–1193, 2009.

    Google Scholar 

  31. Snavely, N.; Seitz, S. M.; Szeliski, R.: “Skeletal graphs for efficient structure from motion,” in IEEE Proc. Computer Vision and Pattern Recognition (CVPR), 2008, S. 1–8.

    Google Scholar 

  32. Klein, G.; Murray, D.: “Parallel Tracking and Mapping for Small AR Workspaces,” in IEEE/ACM Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2007, S. 225–234.

    Google Scholar 

  33. Streckel, Birger; Friso, Jan; Senne, Evers; Koch, Reinhard: Lens Model Selection for a Markerless AR Tracking System, ISMAR 2005, Vienna, Austria, 2005.

    Google Scholar 

  34. Hartley, Triggs; Fitzgibbon, A.: Bundle adjustment a modern synthesis. In: LNCS Vision Algorithms: Theory and Practice; vol. 1883. 2000, S. 153– 177., B., McLauchlan, P.,

    Google Scholar 

  35. Lepetit, V.; Fua, P.: Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 28(9):1465–1479, 2006.

    Google Scholar 

  36. Özuysal, M.; Lepetit, V.; Fleuret, F.; Fua, P.: Feature harvesting for tracking-bydetection. In: LNCS Proc. European Conf. on Computer Vision (ECCV); vol. 3953. 2006, S. 592–605.

    Google Scholar 

  37. Hartley, R.; Zisserman, A.: Multiple View Geometry, 2nd edition. Cambridge University Press, 2003.

    Google Scholar 

  38. Umeyama, S.: Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 13:376–380, 1991.

    Google Scholar 

  39. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America (JOSA), 4(4):629–642, 1987.

    Google Scholar 

  40. Triggs, B.; McLauchlan, R.; Hartley, R.; Fitzgibbon, A.: Bundle Adjustment – A Modern Synthesis. In Proc. International Workshop on Vision Algorithms: Theory and Practice, pages 298–372, 2000.

    Google Scholar 

  41. Engels, C.; Stewenius, H.; Nister, D.: Bundle Adjustment Rules. Photogrammetric Computer Vision (PCV).

    Google Scholar 

  42. Lourakis, M.; Argyros, A.: SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS), 36(1).

    Google Scholar 

  43. Bleser, G.; Wuest, H.; Stricker, D.: Online camera pose estimation in partially known and dynamic scenes. In Proc. IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pages 56–65, 2006.

    Google Scholar 

  44. Wuest, H.; Pagani, A.; Stricker, D.: Feature Management for Efficient Camera Tracking. In Proc. Asian Conference on Computer Vision (ACCV), pages 769–778, 2007.

    Google Scholar 

  45. Schwerdtfeger, Björn; Klinker, Gudrun: AVILUS Tracking Contest 2010, 16. – 27. August 2010 Abschlussbericht, Fachgebiet Augmented Reality, Technische Universität München.

    Google Scholar 

  46. Foxlin, E.; Naimark, L.: Vis-tracker: A wearable vision-inertial selftracker. In IEEE Proc. Virtual Reality (VR), pages 199–206, 2003.

    Google Scholar 

  47. Jiang, B.; Neumann, U., You, S.: A robust hybrid tracking system for outdoor augmented reality. In IEEE Proc. Virtual Reality (VR), page 3, 2004.

    Google Scholar 

  48. Reitmayr, G.; Drummond, T. W.: Going out: Robust tracking for outdoor augmented reality. In IEEE/ACM Proc. Int. Symp. on Mixed and Augmented Reality (ISMAR), pages 109–118, 2006.

    Google Scholar 

  49. Bleser, G.; Stricker, D.: Advanced tracking through efficient image processing and visual-inertial sensor fusion. Computers & Graphics (C&G) 2009; 33(1):59 – 72.

    Google Scholar 

  50. Fischler, M.; Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Graph. Image Process, 1981, 24, (6), S. 381–395.

    Google Scholar 

  51. Thrun, S.; Burgard, W.; Fox, D.: Probabilistic Robotics, MIT Press, 2005.

    Google Scholar 

  52. Besl, Paul; McKay, Neil: A Method for Registration of 3D Shapes [Konferenz] // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1992. – Bd. 14(2). – S. 239–256.

    Google Scholar 

  53. Bleser, Gabriele; Wuest, Harald; Stricker, Didier: Online Camera Pose Estimation in Partially Known and Dynamic Scenes [Konferenz] // Proceedings of the 2006 Fifth IEEE and ACM International Symposium on Mixed and Augmented Reality. – 2006. – S. 56–65.

    Google Scholar 

  54. Kahn, Svenja; Wuest, Harald; Fellner, Dieter: Time-of-Flight Based Scene Reconstruction with a Mesh Processing Tool for Model Based Camera Tracking [Konferenz] // : 5th International Conference on Computer Vision Theory and Applications (VISAPP). – 2010a. – Bd. 1. – S. 302–309.

    Google Scholar 

  55. Cignoni, P. [et al.] Meshlab: An Open-Source Mesh Processing Tool [Konferenz] // Sixth Eurographics Italian Chapter Conference. – 2008. – S. 129–136.

    Google Scholar 

  56. Kahn, Svenja [et al.] 3D Discrepancy Check via Augmented Reality [Konferenz] // Proceedings of the 2010 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR). – 2010b. – S. 241–242.

    Google Scholar 

  57. Georgel, Pierre [et al.] An Industrial Augmented Reality Solution For Discrepancy Check [Konferenz] // Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. – 2007. – S. 1–4.

    Google Scholar 

  58. Bosché, Frédéric: Automated Recognition of 3D CAD Model Objects in Laser Scans and Calculation of As-Built Dimensions for Dimensional Compliance Control in Construction [Journal] // Advanced Engineering Informatics. – Amsterdam : Elsevier Science Publishers B. V., 2010. – 1 : Bd. 24. – S. 107–118.

    Google Scholar 

  59. Oggier, Thierry; Lustenberger, Felix; Blanc, Nicolas: Miniature 3D TOF Camera for Real-Time Imaging [Buchabschnitt]. – : Lecture Notes in Computer Science, 2006. – Bd. 4021.

    Google Scholar 

  60. PrimeSense http://www.primesense.com/ [Online]. – March 2011.

  61. Kahn, Svenja; Bockholt, Ulrich: 3D Rekonstruktion mit einer Tiefenkamera für Industrielle Augmented Reality Anwendungen [Konferenz] // IFF Wissenschaftstage. – 2009. – S. 105–112.

    Google Scholar 

  62. Wunsch, R.: Modellbasierte Initialisierung der Kamerapose anhand des “Iterative Closest Point”-Algorithmus (Betr.: Kahn, S.). – Diplomarbeit, FH Offenburg : Rüdebusch, T., 2010.

    Google Scholar 

  63. Kleine, W.: Extraktion eines 3D-Kantenmodells aus Tiefenbildern (Betr.: Kahn, S.). – Bachelorarbeit, TU Darmstadt : Goesele, M., 2009.

    Google Scholar 

  64. Briemann, D.: Bildverbesserung von Time-of-Flight Bildern mit Hilfe von Markov Random Fields und 2D-Farbbildern (Betr.: Kahn, S.). – Bachelorarbeit, Hochschule Darmstadt : Hergenröther, E., 2010.

    Google Scholar 

  65. Thöner, M.: Vergleichende Evaluierung von Time-of-Flight und Structure from Motion Rekonstruktion zur Entwicklung eines kombinierten Kameratracking-Verfahrens (Betr.: Kahn, S.). – TU Darmstadt : Fellner, D.W., 2010.

    Google Scholar 

  66. Taylor, Geoffrey; Kleeman, Lindsay: Fusion of Multimodal Visual Cues for Model-Based Object Tracking; in: Australasian Conference on Robotics and Automation (ACRA2003), Brisbane, Australia.

    Google Scholar 

  67. Ville, Kyrki; Danica, Kragic: Tracking Unobservable Rotations by Cue Integration; in Proceedings of the 2006, IEEE International Conference on Robotics and Automation, Orlando, Florida.

    Google Scholar 

  68. Ozuysal, M.; Lepetit, V.; Fleuret, F.; Fua, P.: Feature Harvesting for Tracking-by-Detection. In Proceedings of the European Conference on Computer Vision, 2006.

    Google Scholar 

  69. David, G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, 60, 2 (2004), S. 91–110.

    Google Scholar 

  70. Hinterstoisser, S.; Benhimane, S.; and Navab, N. (2007). N3M: Natural 3D Markers for Real-Time Object Detection and Pose Estimation. In IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  71. Hinterstoisser, S.; Benhimane, S.; Lepetit, V.; Fua, P.; Navab, N.: Simultaneous Recognition and Homography Extraction of Local Patches With a Simple Linear Classifier. British Machine Vision Conference (BMVC), 2008.

    Google Scholar 

  72. Hinterstoisser, S.; Benhimane, S.; Navab, N.; Fua, P.; Lepetit, V.: Online Learning of Patch Perspective Rectification for Efficient Object Detection. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.

    Google Scholar 

  73. Alt, N.; Hinterstoisser, S.; Navab, N. (2010). Rapid selection of reliable templates for visual tracking. In IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  74. Hinterstoisser, S.; Ilic, S.; Sturm, P.; Navab, N.; Fua, P.; Lepetit, V.: Gradient response maps for real-time detection of texture-less objects. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.

    Google Scholar 

  75. Hinterstoisser, S.; Kutter, O.; Navab, N.; Fua, P.; Lepetit, V.: Real-Time Learning of Accurate Patch Rectification. In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

    Google Scholar 

  76. Hinterstoisser, S.; Lepetit, V.; Benhimane, S.; Fua, P.; Navab, N.: Learning Real-Time Perspective Patch Rectification. International Journal of Computer Vision, 2010.

    Google Scholar 

  77. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Fua, P.; Navab, N.: Dominant Orientation Templates for Real-Time Detection of Texture-Less Objects. In IEEE Conference on Computer Vision and Pattern Recognition, 2010.

    Google Scholar 

  78. Holzer, S.; Hinterstoisser, S.; Ilic, S.; Navab, N.: Distance Transform Templates for Object Detection and Pose Estimation. In IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  79. Jurie, F.; Dhome, M.: Hyperplane Approximation for Template Matching. In Transactions on Pattern Analysis and Machine Intelligence, 2002.

    Google Scholar 

  80. Benhimane, F.; Malis, E.: Real-Time image-based tracking of planes using Efficient Second-order Minimization, In IEEE International Conference on Intelligent Robots and Systems, 2004.

    Google Scholar 

  81. Fleck, Margaret M.: Perspective Projection: the Wrong Imaging Model. 1995.

    Google Scholar 

  82. Scaramuzza, D.; Martinelli, A.; Siegwart, R. A.: Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion. Proceedings of IEEE International Conference of Vision Systems (ICVS), 2006.

    Google Scholar 

  83. Scaramuzza, D.; Martinelli, A.; Siegwart, R.: A: Toolbox for Easy Calibrating Omnidirectional Cameras, Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS), 2006.

    Google Scholar 

  84. Streckel, B.; Koch, R.: Lens Model Selection for Visual Tracking. In W. G. Kropatsch, R. Sablatnig, and A. Hanbury, editors, Deutsche Arbeitsgemeinschaft Mustererkennung (DAGM), volume 3663 of Lecture Notes in Computer Science, pages 41–48. Springer, Aug./Sept. 2005.

    Google Scholar 

  85. Bolles, R.; Fischler, M.: A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, Canada, 1981.

    Google Scholar 

  86. Noell, D. S.; Pagani, A.: Real-time camera pose estimation using correspondences with high outlier ratios. In International Conference on Computer Vision Theory and Applications (VISAPP), 2010.

    Google Scholar 

  87. Pagani, Alain; Köhler, Johannes: Circular markers for camera pose estimation. In International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), 2011.

    Google Scholar 

  88. Köhler, Johannes; Pagani, Alain: Robust detection and identification of partially occluded circular markers. In International Conference on Computer Vision Theory and Applications (VISAPP), 2010.

    Google Scholar 

  89. Bleser, G.; Stricker, D.: Advanced tracking through efficient image processing and visual-inertial sensor fusion. Computer & Graphics, 33:59–72, 2009.

    Google Scholar 

  90. Julier, S. J.; Uhlmann, J. K.: Unscented Filtering and Nonlinear Estimation. 92:401–422, Mar. 2004.

    Google Scholar 

  91. Gustafsson, F.: Adaptive Filtering and Change Detection. John Wiley & Sons, Sept. 2000.

    Google Scholar 

  92. Bleser, G.; Becker, M.; Stricker, D.: Real-time vision-based tracking and reconstruction. Journal of Real-Time Image Processing, 2(2–3):161–175, Nov. 2007.

    Google Scholar 

  93. Bleser, G.; Hendeby, D.: Using optical flow for filling the gaps in visual-inertial tracking. In Proc. European Signal Processing Conference (EUSIPCO), 2010.

    Google Scholar 

  94. Weiss AG Civetta camera. www.weiss-ag.org/businessdivisions/360-technology.

  95. Morel, J.; Sift, G. Yu.: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2:438–469, 2009.

    Google Scholar 

  96. Cui, Y.; Pagani, A.; Stricker, D.: Sift in perception-based color space. In Proceedings of the IEEE International Conference on Image Processing (ICIP), 2010.

    Google Scholar 

  97. Lowe, D. G.: Object recognition from local scale-invariant features. In International Conference on Computer Vision, 1999.

    Google Scholar 

  98. Furukawa, Y.; Curless, B.; Seitz, S. M.; Szeliski, R.: Towards internet-scale multi-view stereo. In CVPR, 2010.

    Google Scholar 

  99. Koeser, K.; Bartczak, B.; Koch, R.: Drift-free Pose Estimation with Hemispherical Cameras. In Conference on Visual Media Production (CVMP), pages 20–28, London, Nov. 2006.

    Google Scholar 

  100. Bleser, Gabriele: Towards Visual-Inertial SLAM for Mobile Augmented Reality, Dissertation, Technical University Kaiserslautern, Dr. Hut Verlag, Mar 2009.

    Google Scholar 

  101. Köhler, Johannes: Robust Detection and Identification of Circular Markers for Estimation of the Camera Pose in Real Time, Department of Computer Science, Technical University Kaiserslautern, July 2009.

    Google Scholar 

  102. Nöll, Tobias: Robust Camera Position Estimation by Integration of a priori Information, Department of Computer Science, Technical University Kaiserslautern, February 2010.

    Google Scholar 

  103. Larsson, Olof: Improved model-based visual-inertial tracking using 2D image information, Division of Automatic Control, Department of Electrical Engineering, Linköping University.

    Google Scholar 

  104. Injy, Amin: Optical Flow Estimation in Fisheye Images, Media Engineering and Technology Faculty, German University in Cairo, August 2010.

    Google Scholar 

  105. Reem, Aref: Prior Probability in Pose Estimation Algorithms, Media Engineering and Technology Faculty, German University in Cairo, August 2010.

    Google Scholar 

  106. Tama, Hanna: Detection and Identification of Partially Occluded Circular Markers Based on Digital Codes and Erasure Locations, Media Engineering and Technology Faculty, German University in Cairo, August 2010.

    Google Scholar 

  107. Schenkenberger, Benjamin: Automatische Kartierung von synthetischen Landmarken aus Kamerabildern, Fachhochschule Kaiserslautern, Fachbereich Informatik und Mikrosystemtechnik, Studiengang Angewandte Informatik, März 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bockholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Bockholt, U. (2016). Teilprojekt TP 3 – Tracking. In: Schenk, M., Schumann, M. (eds) Angewandte Virtuelle Techniken im Produktentstehungsprozess. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49317-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49317-5_5

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49316-8

  • Online ISBN: 978-3-662-49317-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics