Skip to main content

Optic Nerve: The Glaucomatous Optic Nerve

  • Chapter
  • First Online:
Pearls of Glaucoma Management
  • 1139 Accesses

Abstract

The principle insult in glaucoma occurs within the neural, cellular, and connective tissues of the optic nerve head (ONH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open-angle glaucoma. Surv Ophthalmol. 1999;43 Suppl 1:S223–43.

    Article  PubMed  Google Scholar 

  2. Jonas JB, Grundler A. Optic disc morphology in “age-related atrophic glaucoma”. Graefes Arch Clin Exp Ophthalmol. 1996;234:744–9.

    Article  CAS  PubMed  Google Scholar 

  3. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology. 1996;103:640–9.

    Article  CAS  PubMed  Google Scholar 

  4. Nicolela MT, Drance SM, Broadway DC, et al. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132:836–44.

    Article  CAS  PubMed  Google Scholar 

  5. Nicolela MT, McCormick TA, Drance SM, et al. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–84.

    Article  PubMed  Google Scholar 

  6. Nicolela MT, Walman BE, Buckley AR, Drance SM. Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–9.

    Article  CAS  PubMed  Google Scholar 

  7. Asai T, Katsumori N, Mizokami K. Retinal ganglion cell damage in human glaucoma. 2. Studies on damage pattern. Nippon Ganka Gakkai Zasshi. 1987;91:1204–13.

    CAS  PubMed  Google Scholar 

  8. Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995;61:33–44.

    Article  CAS  PubMed  Google Scholar 

  9. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–86.

    CAS  PubMed  Google Scholar 

  10. Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–20.

    CAS  PubMed  Google Scholar 

  11. Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–6.

    CAS  PubMed  Google Scholar 

  12. Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol. 1995;23:85–91.

    Article  CAS  PubMed  Google Scholar 

  13. Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y. Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol. 1995;120:184–9.

    Article  CAS  PubMed  Google Scholar 

  14. Panda S, Jonas JB. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2532–6.

    CAS  PubMed  Google Scholar 

  15. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci. 1995;36:200–5.

    CAS  PubMed  Google Scholar 

  16. Nork TM, Ver Hoeve JN, Poulsen GL, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000;118:235–45.

    Article  CAS  PubMed  Google Scholar 

  17. Janssen P, Naskar R, Moore S, Thanos S, Thiel HJ. Evidence for glaucoma-induced horizontal cell alterations in the human retina. Ger J Ophthalmol. 1996;5:378–85.

    CAS  PubMed  Google Scholar 

  18. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–84.

    Article  CAS  PubMed  Google Scholar 

  19. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–22.

    CAS  PubMed  Google Scholar 

  20. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–81.

    Article  PubMed  Google Scholar 

  21. Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.

    CAS  PubMed  Google Scholar 

  22. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.

    CAS  PubMed  Google Scholar 

  23. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.

    Article  CAS  PubMed  Google Scholar 

  24. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–30.

    Article  CAS  PubMed  Google Scholar 

  25. Bellezza AJ, Rintalan CJ, Thompson HW, et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–37.

    Article  PubMed  Google Scholar 

  26. Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci. 2004;45:4388–99.

    Article  PubMed  Google Scholar 

  27. Downs JC, Suh JK, Thomas KA, et al. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46:540–6.

    Article  PubMed  Google Scholar 

  28. Downs JC, Yang H, Girkin C, et al. Three dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest Ophthalmol Vis Sci. 2007;48:3195–208.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang H, Downs JC, Girkin C, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007;48:4597–607.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang H, Downs JC, Bellezza AJ, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–84.

    Article  PubMed  Google Scholar 

  31. Johnson EC, Morrison JC, Farrell S, et al. The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix. Exp Eye Res. 1996;62:663–74.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2000;41:431–42.

    CAS  PubMed  Google Scholar 

  33. Cepurna WO, Kayton RJ, Johnson EC, Morrison JC. Age related optic nerve axonal loss in adult brown Norway rats. Exp Eye Res. 2005;80:877–84.

    Article  CAS  PubMed  Google Scholar 

  34. Howell GR, Libby RT, Jakobs TC, et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol. 2007;179:1523–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.

    Article  CAS  PubMed  Google Scholar 

  36. Morrison J, L’Hernault N, Jerdan J, Quigley H. Ultrastructural localization of extracellular matrix components in the monkey optic nerve head. Ubvest Iogtgaknik Vus Scu. 1988;29:353.

    Google Scholar 

  37. Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res. 1991;10:877–88.

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–903.

    CAS  PubMed  Google Scholar 

  39. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.

    Article  CAS  PubMed  Google Scholar 

  40. Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001;10:S16–8.

    Article  CAS  PubMed  Google Scholar 

  41. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.

    Article  PubMed  Google Scholar 

  42. Bito LZ. Impact of intraocular pressure on venous outflow from the globe: a hypothesis regarding IOP-dependent vascular damage in normal-tension and hypertensive glaucoma. J Glaucoma. 1996;5:127–34.

    CAS  PubMed  Google Scholar 

  43. Langham M. The temporal relation between intraocular pressure and loss of vision in chronic simple glaucoma. Glaucoma. 1980;2:427–35.

    Google Scholar 

  44. Hayreh SS. Pathogenesis of cupping of the optic disc. Br J Ophthalmol. 1974;58:863–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayreh SS. Pathogenesis of optic nerve head changes in glaucoma. Semin Ophthalmol. 1986;1:1–13.

    Article  Google Scholar 

  46. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2001;42:975–82.

    CAS  PubMed  Google Scholar 

  47. Wax MB, Tezel G, Edward PD. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch Ophthalmol. 1998;116:993–1001.

    Article  CAS  PubMed  Google Scholar 

  48. Wax MB. Is there a role for the immune system in glaucomatous optic neuropathy? Curr Opin Ophthalmol. 2000;11:145–50.

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz M. Lessons for glaucoma from other neurodegenerative diseases: can one treatment suit them all? J Glaucoma. 2005;14:321–3.

    Article  PubMed  Google Scholar 

  50. Schwartz M, Yoles E. Self-destructive and self-protective processes in the damaged optic nerve: implications for glaucoma. Invest Ophthalmol Vis Sci. 2000;41:349–51.

    CAS  PubMed  Google Scholar 

  51. Anderson MG, Libby RT, Gould DB, Smith RS, John SW. High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proc Natl Acad Sci U S A. 2005;102:4566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980;98:490–5.

    Article  CAS  PubMed  Google Scholar 

  53. Pederson JE, Gaasterland DE. Laser-induced primate glaucoma. I. Progression of cupping. Arch Ophthalmol. 1984;102:1689–92.

    Article  CAS  PubMed  Google Scholar 

  54. Johns KJ, Leonard-Martin T, Feman SS. The effect of panretinal photocoagulation on optic nerve cupping. Ophthalmology. 1989;96:211–6.

    Article  CAS  PubMed  Google Scholar 

  55. Klein BE, Klein R, Lee KE, Hoyer CJ. Does the intraocular pressure effect on optic disc cupping differ by age? Trans Am Ophthalmol Soc. 2006;104:143–8.

    PubMed  PubMed Central  Google Scholar 

  56. Sponsel WE, Shoemaker J, Trigo Y, et al. Frequency of sustained glaucomatous-type visual field loss and associated optic nerve cupping in Beaver Dam, Wisconsin. Clin Experiment Ophthalmol. 2001;29:352–8.

    Article  CAS  PubMed  Google Scholar 

  57. Greenfield DS, Siatkowski RM, Glaser JS, Schatz NJ, Parrish 2nd RK. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105:1866–74.

    Article  CAS  PubMed  Google Scholar 

  58. Bianchi-Marzoli S, Rizzo 3rd JF, Brancato R, Lessell S. Quantitative analysis of optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:436–40.

    Article  CAS  PubMed  Google Scholar 

  59. Schwartz JT, Reuling FH, Garrison RJ. Acquired cupping of the optic nerve head in normotensive eyes. Br J Ophthalmol. 1975;59:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalvin NH, Hamasaki DI, Gass JD. Experimental glaucoma in monkeys. I. Relationship between intraocular pressure and cupping of the optic disc and cavernous atrophy of the optic nerve. Arch Ophthalmol. 1966;76:82–93.

    Article  CAS  PubMed  Google Scholar 

  61. Vrabec F. Glaucomatous cupping of the human optic disk: a neuro-histologic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;198:223–34.

    Article  CAS  PubMed  Google Scholar 

  62. Anderson DR, Cynader MS. Glaucomatous optic nerve cupping as an optic neuropathy. Clin Neurosci. 1997;4:274–8.

    CAS  PubMed  Google Scholar 

  63. Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Am Acad Ophthalmol Otolaryngol. 1977;83:755–62.

    CAS  Google Scholar 

  64. Trobe JD, Glaser JS, Cassady J, Herschler J, Anderson DR. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–50.

    Article  CAS  PubMed  Google Scholar 

  65. Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:1586–94.

    Article  CAS  PubMed  Google Scholar 

  66. Hall ER, Klein BE, Knudtson MD, Meuer SM, Klein R. Age-related macular degeneration and optic disk cupping: the Beaver Dam Eye Study. Am J Ophthalmol. 2006;141:494–7.

    Article  PubMed  Google Scholar 

  67. Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.

    Article  PubMed  Google Scholar 

  68. Alward WL. Macular degeneration and glaucoma-like optic nerve head cupping. Am J Ophthalmol. 2004;138:135–6.

    Article  PubMed  Google Scholar 

  69. Danesh-Meyer HV, Savino PJ, Sergott RC. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:593–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ambati BK, Rizzo 3rd JF. Nonglaucomatous cupping of the optic disc. Int Ophthalmol Clin. 2001;41:139–49.

    Article  CAS  PubMed  Google Scholar 

  71. Greenfield DS. Glaucomatous versus nonglaucomatous optic disc cupping: clinical differentiation. Semin Ophthalmol. 1999;14:95–108.

    Article  CAS  PubMed  Google Scholar 

  72. Sharma M, Volpe NJ, Dreyer EB. Methanol-induced optic nerve cupping. Arch Ophthalmol. 1999;117:286.

    Article  CAS  PubMed  Google Scholar 

  73. Manor RS. Documented optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:1577–8.

    Article  CAS  PubMed  Google Scholar 

  74. Orgul S, Gass A, Flammer J. Optic disc cupping in arteritic anterior ischemic optic neuropathy. Ophthalmologica. 1994;208:336–8.

    Article  CAS  PubMed  Google Scholar 

  75. Sonty S, Schwartz B. Development of cupping and pallor in posterior ischemic optic neuropathy. Int Ophthalmol. 1983;6:213–20.

    Article  CAS  PubMed  Google Scholar 

  76. Votruba M, Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol. 2003;87:48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980;19:137–52.

    CAS  PubMed  Google Scholar 

  78. Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19:297–321.

    Article  CAS  PubMed  Google Scholar 

  79. Agapova OA, Kaufman PL, Lucarelli MJ, Gabelt BT, Hernandez MR. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res. 2003;967:132–43.

    Article  CAS  PubMed  Google Scholar 

  80. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48:3161–77.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1997;235:627–33.

    Article  CAS  PubMed  Google Scholar 

  82. Fernandez MC, Jonas JB, Naumann GO. Para-papillary chorioretinal atrophy in eyes with shallow glaucomatous optic disk cupping. Fortschr Ophthalmol. 1990;87:457–60.

    CAS  PubMed  Google Scholar 

  83. Burgoyne CF, Downs JC. Optic nerve head (ONH) biomechanics underlies the clinical behaviour and susceptibility of the aged optic nerve head. J Glaucoma. 2008;17:318–28.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rochtchina E, Mitchell P, Wang JJ. Relationship between age and intraocular pressure: the Blue Mountains Eye Study. Clin Experiment Ophthalmol. 2002;30:173–5.

    Article  PubMed  Google Scholar 

  85. Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. The relationship between age and intraocular pressure in a Japanese population: the influence of central corneal thickness. Curr Eye Res. 2002;24:81–5.

    Article  PubMed  Google Scholar 

  86. Nomura H, Shimokata H, Ando F, Miyake Y, Kuzuya F. Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology. 1999;106:2016–22.

    Article  CAS  PubMed  Google Scholar 

  87. Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1992;33:2224–8.

    CAS  PubMed  Google Scholar 

  88. Weih LM, Mukesh BN, McCarty CA, Taylor HR. Association of demographic, familial, medical, and ocular factors with intraocular pressure. Arch Ophthalmol. 2001;119:875–80.

    Article  CAS  PubMed  Google Scholar 

  89. Leske MC, Connell AM, Wu SY, Hyman L, Schachat AP. Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol. 1997;115:1051–7.

    Article  CAS  PubMed  Google Scholar 

  90. Wu SY, Leske MC. Associations with intraocular pressure in the Barbados Eye Study. Arch Ophthalmol. 1997;115:1572–6.

    Article  CAS  PubMed  Google Scholar 

  91. Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. J Am Med Assoc. 1991;266:369–74.

    Article  CAS  Google Scholar 

  92. Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113:1613–7.

    Article  PubMed  Google Scholar 

  93. Friedman DS, Jampel HD, Munoz B, West SK. The prevalence of open-angle glaucoma among blacks and whites 73 years and older: the Salisbury Eye Evaluation Glaucoma Study. Arch Ophthalmol. 2006;124:1625–30.

    Article  PubMed  Google Scholar 

  94. Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–7.

    Article  CAS  PubMed  Google Scholar 

  95. Drance SM, Sweeney VP, Morgan RW, Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973;89:457–65.

    Article  CAS  PubMed  Google Scholar 

  96. Goldberg I, Hollows FC, Kass MA, Becker B. Systemic factors in patients with low-tension glaucoma. Br J Ophthalmol. 1981;65:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klein BE, Klein R, Sponsel WE, et al. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992;99:1499–504.

    Article  CAS  PubMed  Google Scholar 

  98. Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–64.

    Article  CAS  PubMed  Google Scholar 

  99. Shiose Y. Prevalence and clinical aspects of low-tension glaucoma. Philadelphia: Lippincott; 1983.

    Google Scholar 

  100. Geijssen HC. Studies on normal pressure glaucoma. Amstelveen: Kugler; 1991.

    Google Scholar 

  101. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–20; discussion 829–730.

    Article  PubMed  Google Scholar 

  102. Nouri-Mahdavi K, Hoffman D, Coleman AL, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111:1627–35.

    Article  PubMed  Google Scholar 

  103. Heijl A, Leske MC, Bengtsson B, Hussein M. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand. 2003;81:286–93.

    Article  PubMed  Google Scholar 

  104. Greene PR. Mechanical considerations in myopia: relative effects of accommodation, convergence, intraocular pressure, and the extraocular muscles. Am J Optom Physiol Opt. 1980;57:902–14.

    Article  CAS  PubMed  Google Scholar 

  105. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41:2991–3000.

    CAS  PubMed  Google Scholar 

  106. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46:4189–99.

    Article  PubMed  Google Scholar 

  107. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Reconstruction of human optic nerve heads for finite element modeling. Technol Health Care. 2005;13:313–29.

    PubMed  Google Scholar 

  108. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45:4378–87.

    Article  PubMed  Google Scholar 

  109. Repka MX, Quigley HA. The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology. 1989;96:26–32.

    Article  CAS  PubMed  Google Scholar 

  110. Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984;97:760–6.

    Article  CAS  PubMed  Google Scholar 

  111. Morrison JC, Cork LC, Dunkelberger GR, Brown A, Quigley HA. Aging changes of the rhesus monkey optic nerve. Invest Ophthalmol Vis Sci. 1990;31:1623–7.

    CAS  PubMed  Google Scholar 

  112. Cull G, Cioffi GA, Dong J, Homer L, Wang L. Estimating normal optic nerve axon numbers in non-human primate eyes. J Glaucoma. 2003;12:301–6.

    Article  PubMed  Google Scholar 

  113. Sandell JH, Peters A. Effects of age on the glial cells in the rhesus monkey optic nerve. J Comp Neurol. 2002;445:13–28.

    Article  PubMed  Google Scholar 

  114. Sandell JH, Peters A. Effects of age on nerve fibers in the rhesus monkey optic nerve. J Comp Neurol. 2001;429:541–53.

    Article  CAS  PubMed  Google Scholar 

  115. Frisen L. High-pass resolution perimetry and age-related loss of visual pathway neurons. Acta Ophthalmol (Copenh). 1991;69:511–5.

    Article  CAS  Google Scholar 

  116. Albon J, Purslow PP, Karwatowski WS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morrison JC, Jerdan JA, Dorman ME, Quigley HA. Structural proteins of the neonatal and adult lamina cribrosa. Arch Ophthalmol. 1989;107:1220–4.

    Article  CAS  PubMed  Google Scholar 

  118. Pena JD, Roy S, Hernandez MR. Tropoelastin gene expression in optic nerve heads of normal and glaucomatous subjects. Matrix Biol. 1996;15:323–30.

    Article  CAS  PubMed  Google Scholar 

  119. Quigley HA. Childhood glaucoma: results with trabeculotomy and study of reversible cupping. Ophthalmology. 1982;89:219–26.

    Article  CAS  PubMed  Google Scholar 

  120. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH. Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol. 1989;107:476–84.

    Article  CAS  PubMed  Google Scholar 

  121. Jeffery G, Evans A, Albon J, et al. The human optic nerve: fascicular organisation and connective tissue types along the extra-fascicular matrix. Anat Embryol (Berl). 1995;191:491–502.

    Article  CAS  Google Scholar 

  122. Albon J, Karwatowski WS, Easty DL, Sims TJ, Duance VC. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol. 2000;84:311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106:1–56.

    Article  CAS  PubMed  Google Scholar 

  124. Brown CT, Vural M, Johnson M, Trinkaus-Randall V. Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Ageing Dev. 1994;77:97–107.

    Article  CAS  PubMed  Google Scholar 

  125. Albon J, Karwatowski WS, Avery N, Easty DL, Duance VC. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol. 1995;79:368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Friedenwald J. It is evident that an increasing rigidity of the ocular coats is characteristic of advancing age. AJO. 1937;20:985–1024.

    Google Scholar 

  127. Kotecha A, Izadi S, Jeffrey G. Age related changes in the thickness of the human lamina cribrosa. Br J Ophthalmol. 2006;90:1531–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Albon J, Farrant S, Akhtar S, et al. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Invest Ophthalmol Vis Sci. 2007;48:2134–44.

    Article  PubMed  Google Scholar 

  129. Grunwald JE, Piltz J, Patel N, Bose S, Riva CE. Effect of aging on retinal macular microcirculation: a blue field simulation study. Invest Ophthalmol Vis Sci. 1993;34:3609–13.

    CAS  PubMed  Google Scholar 

  130. Harris A, Harris M, Biller J, et al. Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol. 2000;118:1076–80.

    Article  CAS  PubMed  Google Scholar 

  131. Hernandez MR, Wang N, Hanley NM, Neufeld AH. Localization of collagen types I and IV mRNAs in human optic nerve head by in situ hybridization. Invest Ophthalmol Vis Sci. 1991;32:2169–77.

    CAS  PubMed  Google Scholar 

  132. May CA. The optic nerve head region of the aged rat: an immunohistochemical investigation. Curr Eye Res. 2003;26:347–54.

    Article  PubMed  Google Scholar 

  133. Investigators TA. The advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.

    Article  Google Scholar 

  134. Kass MA, Heuer DK, Higginbotham EJM, et al. The ocular hypertension treatment study (a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma). Arch Ophthalmol. 2002;120:701–13.

    Article  PubMed  Google Scholar 

  135. Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.

    Article  PubMed  Google Scholar 

  136. Anderson DR, Drance SM, Schulzer M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–9.

    Article  PubMed  Google Scholar 

  137. Zeimer R. Could glaucoma damage be due to a viscoelastic mismatch between the sclera and the lamina cribrosa? J Jpn Glaucoma Soc. 1992;2:17–20.

    Google Scholar 

  138. Zeimer R. Biomechanical properties of the optic nerve head. In: Drance SM, editor. Optic nerve in glaucoma. Amsterdam: Kugler; 1995. p. 107–21.

    Google Scholar 

  139. Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;45:2660–5.

    Article  PubMed  Google Scholar 

  140. Cioffi GA, Van Buskirk EM. Vasculature of the anterior optic nerve and peripapillary choroid. 2nd ed. St. Louis: Mosby; 1996. p. 177–97.

    Google Scholar 

  141. Quigley HA. Overview and introduction to session on connective tissue of the optic nerve in glaucoma. Chapter 2. In: Drance SM, Anderson DR, editors. Optic nerve in glaucoma. Amsterdam: Kugler Publications; 1995. p. 15–36.

    Google Scholar 

  142. Morrision JC, L’Hemault NL, Jerdan JA, Quigley HA. Ultrastructural location of extracellular matrix components in the optic nerve head. Arch Opthamol. 1989;107:123–9.

    Article  Google Scholar 

  143. Emery JM, Landis D, Paton D, Boniuk M, Craig JM. The lamina cribrosa in normal and glaucomatous human eyes. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP290–7.

    CAS  PubMed  Google Scholar 

  144. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of this chapter and its figures appeared in the following article and are used with the permission of the Journal of Glaucoma:

Burgoyne CF, Downs JC. Premise and Prediction—How Optic Nerve Head Biomechanics Underlies the Susceptibility and Clinical Behavior of the Aged Optic Nerve Head. Invited original article. J Glaucoma 2008;17:318328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude F. Burgoyne M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgoyne, C.F. (2016). Optic Nerve: The Glaucomatous Optic Nerve. In: Giaconi, J., Law, S., Nouri-Mahdavi, K., Coleman, A., Caprioli, J. (eds) Pearls of Glaucoma Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49042-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49042-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49040-2

  • Online ISBN: 978-3-662-49042-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics