Skip to main content

Molekulare stereotaktische Biopsie bei Gliompatienten

  • Chapter
  • First Online:
Gliomchirurgie

Zusammenfassung

Die molekulare stereotaktische Biopsie erlaubt es, Gliome minimalinvasiv möglichst umfassend zu charakterisieren. Neben der konventionellen histopathologischen Gewebsdiagnostik ist bei diesem Verfahren die Gewinnung molekulargenetischer Information von entscheidender Bedeutung. Ziel ist es, den Patienten möglichst zügig einem personalisierten Therapiekonzept zuzuführen, das auf das molekulargenetische Profil seines Tumors zugeschnitten ist. Das Kapitel erläutert Voraussetzungen, Durchführung und Bedeutung der molekularen stereotaktischen Biopsie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Balss J et al. (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6): 597–602.

    Article  CAS  PubMed  Google Scholar 

  • Chaumeil MM, JM Lupo, SM Ronen (2015) Magnetic resonance (MR) metabolic imaging in glioma. Brain Pathol 25(6): 769–780.

    Article  CAS  PubMed  Google Scholar 

  • Eckel-Passow JE et al. (2015) Glioma groups based on 1p/19q, IDH, and TERT promotor mutations in tumors. New Engl J Med 372(26): 2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigenbrod S et al. (2014) Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment strategies in glioma patients. Acta Neurochir 156(8): 1427–1440.

    Article  PubMed  Google Scholar 

  • Flavahan WA et al. (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584): 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10): 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA et al. (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Translat Med 7(275): 275ra22–275ra22.

    Article  CAS  Google Scholar 

  • Kunz M et al. (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13(3): 307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • la Fougere C et al. (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13(8): 806–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis DN et al. (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6): 803–20.

    Article  PubMed  Google Scholar 

  • Malmström A et al. (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9): 916–926.

    Article  PubMed  Google Scholar 

  • Osswald M et al. (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580): 93–8.

    CAS  PubMed  Google Scholar 

  • Schuster J et al. (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology 17(6): 854–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suchorska B, NL Albert, J-C Tonn (2016) Usefulness of PET imaging to guide treatment options in gliomas. Curr Treatment Options Neurol 18(1): 1–11.

    Article  Google Scholar 

  • The Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. New Engl J Med 372(26): 2481–2498.

    Article  PubMed Central  Google Scholar 

  • Thon N et al. (2009) Novel molecular stereotactic biopsy procedures reveal intratumoral homogeneity of loss of heterozygosity of 1p/19q and TP53 mutations in World Health Organization grade II gliomas. J Neuropathol Exp Neurol 68(11): 1219–1228.

    Article  PubMed  Google Scholar 

  • Weller M et al. (2012) Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice. Neuro-Oncology 14(suppl4): iv100–iv108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wick W et al. (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13(7): 707–715.

    Article  CAS  PubMed  Google Scholar 

  • Yan H et al. (2009) IDH1 and IDH2 Mutations in Gliomas. New Engl J Med 360(8): 65–773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich-Wilhelm Kreth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreth, FW., Egensperger, R., Stöcklein, V. (2018). Molekulare stereotaktische Biopsie bei Gliompatienten. In: Simon, M. (eds) Gliomchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48694-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48694-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48693-1

  • Online ISBN: 978-3-662-48694-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics