Skip to main content

Realization of Terahertz Self-Mixing Detectors Based on AlGaN/GaN HEMT

  • Chapter
  • First Online:
Field-effect Self-mixing Terahertz Detectors

Part of the book series: Springer Theses ((Springer Theses))

  • 1135 Accesses

Abstract

In this chapter, the fabrication, characterization, and optimization of self-mixing terahertz field-effect detectors based on AlGaN/GaN 2DEG are introduced in details. By fabrication, five different detectors are made to uncover the self-mixing mechanism and search for an optimized detector design. By characterization, we not only obtain the \(I-V\) characteristics, the responsivity, the noise-equivalent power, the response spectrum, the response speed, the polarization effect, etc, but also we probe the localized self-mixing photocurrent based on which the quasi-static detector model and the design of asymmetric antenna are verified. Under the guidance of the detector model, we focus on the design of terahertz antennas and field-effect gate to improve the detector responsivity and sensitivity. An asymmetric antenna with three dipole blocks is found to be the most effective antenna among the five different designs. A design rule for high-sensitivity terahertz detectors is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambacher, O.: Growth and applications of group-III-nitrides. J. Phys. D: Appl. Phys. 31(20), 2653 (1998)

    Google Scholar 

  2. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S.: High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797 (1995)

    Article  Google Scholar 

  3. Nakamura, S., Makai, T., Sench, M.: High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes. J. Appl. Phys. 76, 8189 (1994)

    Article  Google Scholar 

  4. Puurunen, R.L.: Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Article  Google Scholar 

  5. Sun, J.D., Sun, Y.F., Wu, D.M., Cai, Y., Qin, H., Zhang, B.S.: High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506 (2012)

    Article  Google Scholar 

  6. Sun, Y.F., Sun, J.D., Zhou, Y., Tan, R.B., Zeng, C.H., Xue, W., Qin, H., Zhang, B.S., Wu, D.M.: Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett. 98, 252103 (2011)

    Article  Google Scholar 

  7. Sun, J.D., Sun, Y.F., Zhou, Y., Zhang, Z.P., Lin, W.K., Zeng, C.H., Wu, D.M., Zhang, B.S., Qin, H., Li, L.L., Xu, W.: Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN HEMT detectors. AIP Conf. Proc. 1399, 893 (2011)

    Article  Google Scholar 

  8. Zhou, Y., Sun, J.D., Sun, Y.F., Zhang, Z.P., Lin, W.K., Lou, H.X., Zeng, C.H., Lu, M., Cai, Y., Wu, D.M., Lou, S.T., Qin, H., Zhang, B.S.: Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT. J. Semicond. 32(4), 064005 (2011)

    Article  Google Scholar 

  9. Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y.M., Gallon, C., Boeuf, F., Skotnicki, T., Fenouillet-Beranger, C., Maude, D.K., Rumyantseva, S., Shur, M.S.: Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)

    Article  Google Scholar 

  10. Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Sakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., El Fatimy, A.: Field effect transistor for terahertz detection: physics and first imaging applications. J. Infrared Millim. Terahz. Waves 30(12), 1319–1337 (2009)

    Google Scholar 

  11. Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Buf, F., Skotnicki, T., Maude, D., Rumyantsev, S., Shur, M.S.: Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85, 675 (2004)

    Article  Google Scholar 

  12. Lisauskas, A., Pfeiffer, U., Öjefors, E., Bolìvar, P.H., Glaab, D., Roskos, H.G.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)

    Article  Google Scholar 

  13. Knap, W., Rumyantsev, S., Lu, J., Shur, M., Saylor, C., Brunel, L.: Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80, 3433 (2002)

    Article  Google Scholar 

  14. El Fatimy, A., Teppe, F., Dyakonova, N., Knap, W., Seliuta, D., Valuis, G., Shchepetov, A., Roelens, Y., Bollaert, S., Cappy, A., Rumyantsev, S.: Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors. Appl. Phys. Lett. 89, 131926 (2006)

    Article  Google Scholar 

  15. Popov, V.V., Polischuk, O.V., Knap, W., El Fatimy, A.: Broadening of the plasmon resonance due to plasmon-plasmon intermode scattering in terahertz high-electron-mobility transistors. Appl. Phys. Lett. 93, 263503 (2008)

    Article  Google Scholar 

  16. Lü, J.Q., Shur, M.S.: Terahertz detection by high-electron-mobility transistor: enhancement by drain bias. Appl. Phys. Lett. 78, 2587 (2001)

    Google Scholar 

  17. Veksler, D., Teppe, F., Dmitriev, A.P., Yu, V., Kachorovskii, Knap, W.: Detection of terahertz radiation in gated two-dimensional structures governed by dc current. Phys. Rev. B 73, 125328 (2006)

    Google Scholar 

  18. Sun, J.D., Qin, H., Lewis, R.A., Sun, Y.F., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100, 173513 (2012)

    Article  Google Scholar 

  19. Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W.: Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)

    Article  Google Scholar 

  20. Öjefors, E., Lisauskas, A., Glaab, D., Roskos, H.G., Pfeiffer, U.R.: Terahertz imaging detectors in CMOS technology. J. Infrared Millim. Terahz. Waves 30(12), 1269–1280 (2009)

    Google Scholar 

  21. Wang, B., Hellums, J.R., Sodini, C.G.: Thermal noise modeling for analog integrated circuits. IEEE J. Solid-State Circuits 29, 833 (1994)

    Article  Google Scholar 

  22. Hesler, J.L., Crowe, T.W.: Responsivity and noise measurements of zero-zias Schottky ziode zetectors. In: Proceeding of the 18th International Symposium on Space Terahertz Technology, vol. 18, pp. 89 (2007)

    Google Scholar 

  23. Pyroelectric detectors by gentec-eo. http://www.spectrumdetector.com/. Accessed 17 Jun 2014

  24. Golay cells by MICROTECH instuments, Inc. http://www.mtinstruments.com/thzdetectors/index.htm. Accessed 12 May 2014

  25. Boppel, S., Lisauskas, A., Krozer, V., Roskos, H.G.: Performance and performance variations of sub-1 THz detectors fabricated with \(0.15\,\upmu {\rm m}\) CMOS foundry process. Electron. Lett. 47(11), 661–662 (2011)

    Article  Google Scholar 

  26. Öjefors, E., Baktash, N., Zhao, Y., Hadi, R.A., Sherry, H., Pfeiffer, U.R.: Terahertz imaging detectors in a 65-nm CMOS SOI technology. In: 2010 Proceedings of 36th European Solid-State Circuits Conference, vol. 36, pp. 486–489 (2010)

    Google Scholar 

  27. Schuster, F., Coquillat, D., Videlier, H., Sakowicz, M., Teppe, F., Dussopt, L., Giffard, B., Skotnicki, T., Knap, W.: Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express 19(8), 7827–7832 (2011)

    Article  Google Scholar 

  28. Kachorovskii, V.Y., Shur, M.S.: Field effect transistor as ultrafast detector of modulated terahertz radiation. Solid State Electron. 52(2), 182–185 (2008)

    Article  Google Scholar 

  29. Sakowicz, M., sakowski, J., Karpierz, K., Grynberg, M., Knap, W., Gwarek, W.: Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors. J. Appl. Phys. 104, 024519 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, J. (2016). Realization of Terahertz Self-Mixing Detectors Based on AlGaN/GaN HEMT. In: Field-effect Self-mixing Terahertz Detectors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48681-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48681-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48679-5

  • Online ISBN: 978-3-662-48681-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics