Skip to main content

Field-Effect Self-Mixing Mechanism and Detector Model

  • Chapter
  • First Online:
Field-effect Self-mixing Terahertz Detectors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Self-mixing of terahertz electromagnetic wave occurs in a field-effect electron channel when the terahertz electric field modulates both the local electron density and the drift velocity. In order to realize sensitive terahertz detection, asymmetry in the electric field and/or the charge density is required for generation of a unidirectional photocurrent/voltage. Existing hydrodynamic detection theories are reviewed and discussed. A detector model taking into account the spatial distributions of both the terahertz electric field and the electron density in the gated electron channel is developed in this chapter. The model presents full detector characteristics when both a source–drain bias and a gate voltage are applied. The model suggests that an asymmetric distribution of terahertz electric field is preferred for high-responsivity terahertz detection without a source–drain bias. The strength of terahertz photoresponse is characterized by the self-mixing factor and the field-effect factor. The former factor can be optimized by a strongly asymmetric and enhanced terahertz near field by using asymmetric terahertz antennas. Simulations based on the FDTD method confirm the effectiveness of asymmetric antenna design and the low-pass filter to isolate the antenna blocks from the electrical bonding pads for the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyakonov, M., Shur, M.S.: Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465 (1993)

    Article  Google Scholar 

  2. Dyakonov, M., Shur, M.S.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43(3), 380–387 (1996)

    Article  Google Scholar 

  3. L ü, J.Q., Shur, M.S., Hesler, J.L., Liangquan, S., Weikle, R.: Terahertz detector utilizing two-dimensional electronic fluid. IEEE Electron Device Lett. 19(10), 373–375 (1998)

    Google Scholar 

  4. L ü, J.Q., Shur, M.S.: Terahertz detection by high-electron-mobility transistor: enhancement by drain bias. Appl. Phys. Lett. 78, 2587 (2001)

    Google Scholar 

  5. Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y.M., Gallon, C., Boeuf, F., Skotnicki, T., Fenouillet-Beranger, C., Maude, D.K., Rumyantseva, S., Shur, M.S.: Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89(25), 253511 (2006)

    Google Scholar 

  6. Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Sakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., El Fatimy, A.: Field effect transistor for terahertz detection: physics and first imaging applications. J. Infrared Millim. Terahz Waves 30(12), 1319–1337 (2009)

    Google Scholar 

  7. Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Buf, F., Skotnicki, T., Maude, D., Rumyantsev, S., Shur, M.S.: Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85, 675 (2004)

    Google Scholar 

  8. Lisauskas, A., Pfeiffer, U., Öjefors, E., Bolìvar, P.H., Glaab, D., Roskos, H.G.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)

    Article  Google Scholar 

  9. Knap, W., Rumyantsev, S., Lu, J., Shur, M., Saylor, C., Brunel, L.: Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80, 3433 (2002)

    Article  Google Scholar 

  10. El Fatimy, A., Teppe, F., Dyakonova, N., Knap, W., Seliuta, D., Valuis, G., Shchepetov, A., Roelens, Y., Bollaert, S., Cappy, A., Rumyantsev, S.: Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors. Appl. Phys. Lett. 89, 131926 (2006)

    Article  Google Scholar 

  11. Popov, V.V., Polischuk, O.V., Knap, W., El Fatimy, A.: Broadening of the plasmon resonance due to plasmon-plasmon intermode scattering in terahertz high-electron-mobility transistors. Appl. Phys. Lett. 93, 263503 (2008)

    Article  Google Scholar 

  12. Peralta, X.G., Allen, S.J., Wanke, M.C., Harff, N.E., Simmons, J.A., Lilly, M.P., Reno, J.L., Burke, P.J., Eisenstein, J.P.: Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Appl. Phys. Lett. 81, 1627 (2002)

    Google Scholar 

  13. Dyer, G.C., Vinh, N.Q., Allen, S.J., Aizin, G.R., Mikalopas, J., Reno, J.L., Shaner, E.A.: A terahertz plasmon cavity detector. Appl. Phys. Lett. 97, 193507 (2010)

    Article  Google Scholar 

  14. Dyer, G.C., Aizin, G.R., Allen, S.J., Grine, A.D., Bethke, D., Reno, J.L., Shaner, E.A.: Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photonics 7, 925–930 (2013)

    Article  Google Scholar 

  15. Veksler, D., Teppe, F., Dmitriev, A.P., Kachorovskii, V.Yu., Knap, W., Shur, M.S.: Detection of terahertz radiation in gated two-dimensional structures governed by dc current. Phys. Rev. B 73, 125328 (2006)

    Google Scholar 

  16. Sun, J.D., Qin, H., Lewis, R.A., Sun, Y.F., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100, 173513 (2012)

    Article  Google Scholar 

  17. Sun, J.D., Sun, Y.F., Wu, D.M., Cai, Y., Qin, H., Zhang, B.S.: High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506 (2012)

    Article  Google Scholar 

  18. Sun, Y.F., Sun, J.D., Zhou, Y., Tan, R.B., Zeng, C.H., Xue, W., Qin, H., Zhang, B.S., Wu, D.M.: Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett. 98, 252103 (2011)

    Article  Google Scholar 

  19. Sun, J.D., Sun, Y.F., Zhou, Y., Zhang, Z.P., Lin, W.K., C.H., Zeng, Wu, D.M., Zhang, B.S., Qin, H., Li, L.L., Xu, W.: Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN HEMT detectors. AIP Conf. Proc. 1399, 893 (2011)

    Google Scholar 

  20. Zhou, Y., Sun, J.D., Sun, Y.F., Zhang, Z.P., Lin, W.K., Lou, H.X., Zeng, C.H., Lu, M., Cai, Y., Wu, D.M., Lou, S.T., Qin, H., Zhang, B.S.: Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT. J. Semicond. 32(4), 064005 (2011)

    Article  Google Scholar 

  21. Sun, J.D., Qin, H., Lewis, R.A., Yang, X.X., Sun, Y.F., Zhang, Z.P., Li, X.X., Zhang, X.Y., Cai, Y., Wu, D.M., Zhang, B.S.: The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector. Appl. Phys. Lett. 106, 031119 (2015)

    Google Scholar 

  22. Lü, L., Sun, J.D., Lewis, R.A., Sun, Y.F., Wu, D.M., Cai, Y., Qin, H.: Mapping an on-chip terahertz antenna by a scanning near-field probe and a fixed field-effect transistor. Chin. Phys. B 24(2), 028504 (2015)

    Article  Google Scholar 

  23. Brews, J.R.: A charge-sheet model of the MOSFET. Solid State Electron. 21(2), 345–355 (1978)

    Article  Google Scholar 

  24. Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-difference Time-domain Method, 3rd edn. Artech House, Boston (2005)

    Google Scholar 

  25. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(2), 302–307 (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, J. (2016). Field-Effect Self-Mixing Mechanism and Detector Model. In: Field-effect Self-mixing Terahertz Detectors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48681-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48681-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48679-5

  • Online ISBN: 978-3-662-48681-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics