Skip to main content

Abstract

This chapter reviews the background, development, and application of liposomes as dermal drug delivery system, methods for their production and characterization, and possible ways of interaction of liposomes with the skin.

Liposomes resemble cell membranes in their structure and composition. They are typically made from natural lipids and can encapsulate or bind a variety of drug molecules into or onto their membranes. Consequently, all these properties make them attractive candidates for use as drug delivery vehicles.

Today, numerous lab scales, but only a few large-scale techniques for producing liposomes, are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This chapter summarizes laboratory and industrial techniques for liposome production and their limitations.

Liposome applications in dermal/transdermal drug delivery depend on physicochemical characteristics, such as size, composition, loading efficiency, and the stability of the carrier as well as their biological interactions with the skin cells. The application of liposomes on the skin surface has been proven to be effective in drug delivery into the skin. Liposomes increase the permeability of skin for various entrapped drugs and at the same time diminish the side effects of these drugs because lower doses are now required. The use of liposomes in cosmetology also has many benefits, including improved penetration and diffusion of active ingredients, selective transport of active ingredients, longer release time, greater stability of active ingredients, reduction of unwanted side effects, and high biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Katare OP, Vyas SP (2001) Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm 228:43–52

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young AF (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36

    Article  PubMed  CAS  Google Scholar 

  • Anwekar H (2011) Liposome as drug carriers. Int J Pharm Life Sci 2(7):945–951

    CAS  Google Scholar 

  • Arts EGJM, Wijchman JG, Jager S, Hoekstra D (1997) Protein involvement in the fusion between the equatorial segment of acrosome-reacted human spermatozoa and liposomes. Biochem J 325:191–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Audouy S, Hoekstra D (2001) Cationic lipid-mediated transfection in vitro and in vivo (review). Mol Membr Biol 18(2):129–143

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  PubMed  CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Betz G, Imboden R, Imanidis G (2001) Interaction of liposome formulations with human skin in vitro. Int J Pharm 229:117–129

    Article  PubMed  CAS  Google Scholar 

  • Bhushan B (2008) Nanoscale characterization of human hair and hair conditioners. Prog Mater Sci 53:585–710

    Article  CAS  Google Scholar 

  • Blume G (2008) Flexible liposomes for topical applications in cosmetics. In: Wiechers JW, Stream C (eds) Science and applications of skin delivery systems, chapter 15. Allured Publishing, Carol Stream, IL, USA, pp 269–282

    Google Scholar 

  • Blume G, Teichmüller E (1997) New evidence of the penetration of actives by liposomal carrier system. Cosmetics Toiletries Manuf Worldwide 135–139

    Google Scholar 

  • Blume G, Sacher M, Teichmüller D, Schäfer U (2003) The role of liposomes and their future perspective. SÖFW J 129:10–14

    CAS  Google Scholar 

  • Brandl M, Bachmann D, Drechsler M, Bauer KH (1990) Liposome preparation by a new high pressure homogenizer GaulinMicronLAB40. Drug Dev Ind Pharm 16(14):2167–2191

    Article  CAS  Google Scholar 

  • Braun-Falco O, Korting HC, Maibach HI (eds) (1991) Liposome dermatics. Springer, New York

    Google Scholar 

  • Cevc G (1996) Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Sys 13:257–388

    Article  CAS  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Vierl U (2010) Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 141:277–299

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Schatzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 1564:21–30

    Article  PubMed  CAS  Google Scholar 

  • Chimanuka B, Gabriëls M, Detaevernier MR, Plaizier-Vercammen JA (2002) Preparation of beta-artemether liposomes, their HPLC-UV evaluation and relevance for clearing recrudescent parasitaemia in Plasmodium chabaudi malaria–infected mice. J Pharm Biomed Anal 28(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Choi MJ, Maibach HJ (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18:209–219

    Article  PubMed  CAS  Google Scholar 

  • Conlan JW, Krishnan L, Willick GE, Patel GB, Sprott GD (2001) Immunization of mice with lipopeptide antigens encapsulated in novel liposomes prepared from the polar lipids of various Archaeobacteria elicits rapid and prolonged specific protective immunity against infection with the facultative intracellular pathogen, Listeria monocytogenes. Vaccine 19(25–26):3509–3517

    Article  PubMed  CAS  Google Scholar 

  • Deshpande N, Gangrade M, Kekare M, Vaidya V (2010) Determination of free and liposomal amphotericin B in human plasma by liquid chromatography-mass spectroscopy with solid phase extraction and protein precipitation techniques. J Chromatogr B 878(3–4):315–326

    Article  CAS  Google Scholar 

  • Domashenko A, Gupta S, Cotsarelis G (2000) Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplexe. Nat Biotechnol 18:420–423

    Article  PubMed  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2008) Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release 127:59–69

    Article  PubMed  CAS  Google Scholar 

  • Drummond DC, Zignani M, Leroux JC (2000) Current status of pH sensitive liposomes in drug delivery. Prog Lipid Res 39(5):409–460

    Article  PubMed  CAS  Google Scholar 

  • Du Plessis J, Ramachandran C, Weiner N, Muller DG (1994) The influence of particle size of liposomes on the disposition of drug into the skin. Int J Pharm 103:277–282

    Article  Google Scholar 

  • Egbaria K, Weiner N (1990) Liposomes as a drug delivery system. Adv Drug Deliv Syst 5:287–300

    Article  CAS  Google Scholar 

  • Eichenfield LF, Funk A, Fallon-Friedlander S, Cunningham BB (2002) A clinical study to evaluate the efficacy of ELA-Max (4 % liposomal lidocaine) as compared with eutectic mixture of local anesthetics cream for pain reduction of venipuncture in children. Pediatrics 109:1093–1099

    Article  PubMed  Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW (2004) Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm 276:143–161

    Article  PubMed  CAS  Google Scholar 

  • El Maghraby GM, Campbell M, Finnin B (2005) Mechanism of action of novel skin penetration enhancers: phospholipid versus skin lipid liposomes. Int J Pharm 305:90–104

    Article  PubMed  CAS  Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW (2006) Can drug bearing liposomes penetrate intact skin? J Pharm Pharmacol 58:415–429

    Article  PubMed  CAS  Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34:203–222

    Article  PubMed  CAS  Google Scholar 

  • Ferdous AJ, Bennefield SD, Singh M (1997) A modified HPLC method for monensin analysis in liposomes and nanocapsules and its comparison with spectrophotometric and radioactive methods. J Pharm Biomed Anal 15:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Fisher R, Hung O, Mezei M, Stewart R (1998) Topical anaesthesia of intact skin: liposome-encapsulated tetracaine vs EMLA. Br J Anaesth 81:972–973

    Article  PubMed  CAS  Google Scholar 

  • Fočo A, Gašperlin M, Kristl J (2005) Investigation of liposomes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection. Int J Pharm 291:21–29

    Article  PubMed  CAS  Google Scholar 

  • Foldvari M, Gesztes A, Mezei M (1990) Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul 7:479–489

    Article  PubMed  CAS  Google Scholar 

  • Fresta M, Puglisi G (1996) Application of liposomes as potential cutaneous drug delivery systems. J Drug Target 4:95–101

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Weiner N, Flynn G, Ho N (1984) Influence of liposomal drug entrapment on percutaneous absorption. Int J Pharm 20:139–154

    Article  CAS  Google Scholar 

  • Gesztes A, Mezei M (1988) Topical anaesthesia of skin by liposome-encapsulated tetracaine. Aneth Analg 67:1079–1081

    Article  CAS  Google Scholar 

  • Ghyczy M, Nissen HP, Biltz H (1996) The treatment od Acne vulgaris by phosphatidylcholine from soybeans with a high content of linoleic acid. J Appl Cosmetol 14:137–145

    Google Scholar 

  • Glück R (1999) Adjuvant activity of immunopotentiating reconstituted influenza virosomes (IRIVs). Vaccine 17(13–14):1782–1787

    Article  PubMed  Google Scholar 

  • Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20:63–102

    Article  PubMed  CAS  Google Scholar 

  • Goldin SM (1979) Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry 18(19):4173–4176

    Article  PubMed  Google Scholar 

  • Gould-Fogerite S, Kheiri MT, Zhang F (1998) Targeting immune response induction with cochleate and liposome-based vaccines. Adv Drug Deliv Rev 32(3):273–287

    Article  PubMed  CAS  Google Scholar 

  • Grabielle-Madelmont C, Lesieur S, Ollivon M (2003) Characterization of loaded liposomes by size exclusion chromatography. J Biochem Biophys Methods 56(1–3):189–217

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Davis D, Davies A (1987) Liposomes as immunological adjuvants: antigen incorporation studies. Vaccine 5(2):145–151

    Article  PubMed  CAS  Google Scholar 

  • Griese N, Blaschke G, Boos J, Hempel G (2001) Determination of free and liposome-associated daunorubicin and daunorubicinol in plasma by capillary electrophoresis. J Chromatogr A 979(1–2):379–388

    Google Scholar 

  • Grohganz H, Schläfli O, Rischer M, Brandl M (2004) Development and validation of a HPLC method for routine quantification of the decapeptide Cetrorelix in liposome dispersions. J Pharm Biomed Anal 34:963–969

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Domashenko A, Cotsarelis G (2001) The hair follicles as a target for gene therapy. Eur J Dermatol 11(4):353–356

    PubMed  CAS  Google Scholar 

  • Gómez-Hens A, Fernández-Romero JM (2006) Analytical methods for the control of liposomal delivery systems. Trends Anal Chem 25(2):167–178

    Article  CAS  Google Scholar 

  • Hoffman RM (1998) Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles. J Drug Target 5:67–74

    Article  PubMed  CAS  Google Scholar 

  • Hofland HEJ, Bouwstra JA, Bodde HE, Spies F, Junginger HE (1995) Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies. Br J Dermatol 132:853–866

    Article  PubMed  CAS  Google Scholar 

  • Honeywell-Nguyen PL, de Graaff A, Junginger HE, Bouwstra JA (2000) Interaction between elastic and rigid vesicles with human skin in vivo. Proc Int Symp Control Release Bioact Mater 27:237–238

    Google Scholar 

  • Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 123:902–910

    Article  PubMed  CAS  Google Scholar 

  • Honzak L, Sentjurc M (2000) Development of liposome encapsulated clindamycin for treatment of acne vulgaris. Pfligers Arch Eur J Physiol 440(R):44R–45R

    Google Scholar 

  • Jung BH, Chung SJ, Shim CK (2002) Proliposomes as prolonged intranasal drug delivery systems. STP Pharma Sci 12(1):33–38

    CAS  Google Scholar 

  • Junping W, Maitani Y, Takayama K, Nagai T (2000) In vivo evaluation of doxorubicin carried with long circulating and remote loading proliposome. Int J Pharm 203:61–69

    Article  PubMed  CAS  Google Scholar 

  • Kaiser N, Kimpfler A, Massing U, Burger AM, Fiebig HH, Brandl M, Schubert R (2003) 5-fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. Int J Pharm 256:123–131

    Article  PubMed  CAS  Google Scholar 

  • Kaler EW, Herrington KL, Murthy AK (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96:6698–6707

    Article  CAS  Google Scholar 

  • Kersten GFA, Crommelin DJA (2003) Liposomes and ISCOMs. Vaccine 21(9–10):915–920

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58(1):32–45

    Article  PubMed  CAS  Google Scholar 

  • Kinsky SC, Haxby J, Kinsky CB, Demel RA, van Deenen LLM (1968) Effect of cholesterol incorporation on the sensitivity liposomes to the polyene antibiotic, filipin. Biochim Biophys Acta 152(1):174–185

    Article  PubMed  CAS  Google Scholar 

  • Kirjavainen M, Urtti A, Valjakka-Koskela R, Kiesvaara J, Mönkkönen J (1999) Liposome–skin interactions and their effects on the skin permeation of drugs. Eur J Pharm Sci 7:279–286

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa S, Kamasaki M (2006) Enhanced delivery of retinoic acid to skin by cationic liposomes. Chem Pharm Bull 54:242–244

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  PubMed  CAS  Google Scholar 

  • Kono K (2001) Thermosensitive polymer-modified liposomes. Adv Drug Deliv Rev 53(3):307–319

    Article  PubMed  CAS  Google Scholar 

  • Koppenhagen FJ, Storm G, Underberg WJM (1998) Development of a routine analysis method for liposome encapsulated recombinant interleukin-2. J Chromatogr B 716:285–291

    Article  CAS  Google Scholar 

  • Kremer JMH, Esker MWJV, Pathmamanoharan DC, Wiersema PH (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932–3935

    Article  PubMed  CAS  Google Scholar 

  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD (2000) Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun 68(1):54–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulkarni VS (2005) Liposomes in personal care products. In: Rosen MR (ed) Delivery system handbook for personal care and cosmetic products: technology, applications, and formulations. William Andrew Inc., Norwich, NY 13815

    Google Scholar 

  • Lademann J, Otberg N, Richter H, Weigmann HJ, Lindemann U, Schaefer H, Sterry W (2001) Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol 14(1):17–22

    Article  PubMed  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Tibteh 16:307–321

    Article  CAS  Google Scholar 

  • Lasic D, Barenholz Y (1996a) Handbook of nonmedical applications of liposomes, chapter 3, vol 3. CRC-Press, New York

    Google Scholar 

  • Lasic DD, Barenholz Y (eds) (1996b) Handbook of nonmedical applications of liposomes, vol 1. CRC Press, Boca Raton, pp 1–12

    Google Scholar 

  • Lasic DD, Templeton NS (1996) Liposomes in gene therapy. Adv Drug Deliv Rev 20:221–266

    Article  CAS  Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070(1):187–192

    Article  PubMed  CAS  Google Scholar 

  • Laughlin RG (1997) Equilibrium vesicles: fact or fiction? Colloids Surf A 128:27–38

    Article  CAS  Google Scholar 

  • Lautenschläger H (2006) Liposomes. In: Barel AO, Paye M, Maibach HI (eds) Handbook of cosmetic science and technology. CRC Press Taylor & Francis Group p, Boca Raton, pp 155–163

    Google Scholar 

  • Lener EV, Bucalo BD, Kist DA, Moy RL (1997) Topical anesthetic agents in dermatologic surgery. Dermatol Surg 23:673–683

    PubMed  CAS  Google Scholar 

  • Lesieur S, Grabielle-Madelmont C, Paternostre MT, Ollivon M (1993) Study of size distribution and stability of liposomes by high performance gel exclusion chromatography. Chem Phys Lipids 64:57–82

    Article  CAS  Google Scholar 

  • Li L, Lishko V (2001) Method for delivering beneficial compositions to hair follicles. US Patent 6,224,901

    Google Scholar 

  • Lowell GH, Smith LF, Seid RC, Zollinger WD (1988) Peptides bound to proteasomes via hydrophobic feet become highly immunogenic without adjuvants. J Exp Med 167(2):658–663

    Article  PubMed  CAS  Google Scholar 

  • Lundahl P, Zeng CM, Hägglund CL, Gottschalk I, Greijer E (1999) Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles. J Chromatogr B 720:103–120

    Article  Google Scholar 

  • Maitani Y, Soeda H, Junping W, Takayama K (2001) Modified ethanol injection method for liposomes containing β-sitosterol β-D-glucoside. J Liposome Res 11(1):115–125

    Article  PubMed  CAS  Google Scholar 

  • Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858(1):161–168

    Article  PubMed  CAS  Google Scholar 

  • Meybeck A (1992) Comedolytic activity of liposomal antiacne drug in an experimental model. In: Falco OB, Korting HC, Maibach HI (eds) Liposome dermatics. Springer, Berlin, pp 235–241

    Chapter  Google Scholar 

  • Mezei M, Gulasekharam V (1980) Liposomes—a selective drug delivery system for topical route of administration. 1. Lotion dosage form. Life Sci 26:1473–1477

    Article  PubMed  CAS  Google Scholar 

  • Mhashilkar A, Chada S, Roth JA, Ramesh R (2001) Gene therapy, therapeutic approaches and implications. Biotechnol Adv 19:279–297

    Article  PubMed  CAS  Google Scholar 

  • Michel C, Purmann T, Mentrup E, Seiller E, Kreuter J (1992) Effect of liposomes on percutaneous penetration of lipophilic materials. Int J Pharm 84:93–105

    Article  CAS  Google Scholar 

  • Milsmann MHW, Schwendener RA, Weder HG (1978) The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim Biophys Acta 512(1):147–155

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    Article  PubMed  CAS  Google Scholar 

  • Mojović L, Šiler-Marinković S, Zaharijev J (1996a) Oxidative stability of liposomes made from soya lecithin. Chem Ind 50(12):531–537

    Google Scholar 

  • Mojović L, Šiler-Marinković S, Bugarski D, Jovičić G, Petakov M, Bugarski B (1996b) Liposomes with α-tocopherol membrane. Acta Vet Brno 46(4):193–202

    Google Scholar 

  • Moribe K, Tanaka E, Maruyama K, Iwatsuru M (1998) Enhanced encapsulation of amphotericin B into liposomes by complex formation with polyethylene glycol derivatives. Pharm Res 15(11):1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Moussaoui N, Cansell M, Denizot A (2002) Marinosomes ®, marine lipid-based liposomes: physical characterization and potential application in cosmetics. Int J Pharm 242:361–365

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Mackeben S, Müller-Goymann CC (2004) Physicochemical characterisation of liposomes with encapsulated local anaesthetics. Int J Pharm 274:139–148

    Article  PubMed  CAS  Google Scholar 

  • Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(3):285–305

    Article  PubMed  CAS  Google Scholar 

  • Õan Kuijk-Meuwissen MEMJ, Junginger HE, Bouwstra JA (1998) Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochim Biophys Acta 1371:31–39

    Article  Google Scholar 

  • Oberholzer T, Albrizio M, Luisi PL (1995) Polymerase chain reaction in liposomes. Chem Biol 2:677–682

    Article  PubMed  CAS  Google Scholar 

  • Olson F, Hunt CA, Szoka FC (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonatemembranes. Biochim Biophys Acta 557(1):9–23

    Article  PubMed  CAS  Google Scholar 

  • Paul A, Cevc G (1995) Noninvasive administration of protein antigens: transdermal immunization with bovine serum albumin in transfersomes. Vaccine Res 4(3):145–164

    CAS  Google Scholar 

  • Perrin P, Sureau P, Thibodeau L (1985) Structural and immunogenic characteristics of rabies immunosomes. Dev Biol Stand 60:483–491

    PubMed  CAS  Google Scholar 

  • Perugini P, Genta I, Pavanetto F, Conti B, Scalia S, Baruffini A (2000) Study on glycolic acid delivery by liposomes and microspheres. Int J Pharm 196:51–61

    Article  PubMed  CAS  Google Scholar 

  • Pierre MBR, dos Santos Miranda Costa I (2011) Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 303:607–621

    Article  PubMed  CAS  Google Scholar 

  • Praveen M, Soman R, Mathew V (2009) Liposomes-a novel drug delivery system, B. Pharmacy Projects. http://farmacists.blogspot.com/2009/05/liposomes-novel-drug-delivery-system.html

  • Regen SL, Singh A, Oehme G, Singh M (1981) Polymerized phosphatidyl choline vesicles. Stabilized and controllable time-release carriers. Biochem Biophys Res Commun 101(1):131–136

    Article  PubMed  CAS  Google Scholar 

  • Riaz M (1996) Liposomes preparation methods. Pak J Pharm Sci 19(1):65–77

    Google Scholar 

  • Rossi C, Fardella G, Chiappini I, Perioli L, Vescovi C, Ricci M, Giovagnoli S, Scuota S (2004) UV spectroscopy and reverse-phase HPLC as novel methods to determine Capreomycin of liposomal formulations. J Pharm Biomed Anal 36:249–255

    Article  PubMed  CAS  Google Scholar 

  • Równicka-Zubik J, Sułkowska A, Sułkowski WW (2012) Liposomes as a transport system of encapsulated drugs. ISEH, Ostrava, 2012

    Google Scholar 

  • Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305

    Article  PubMed  CAS  Google Scholar 

  • Sand M, Bechara FG, Sand D, Altmeyer P, Hovmann K (2007) A randomized, controlled, double-blind study evaluating melanin-encapsulated liposomes as a chromophore for laser hair removal of blond, white, and gray hair. Ann Plast Surg 58(5):551–554

    Article  PubMed  CAS  Google Scholar 

  • Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T (2000) Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol 75(10):919–922

    Article  CAS  Google Scholar 

  • Schaller M, Korting HC (1996) Interaction of liposomes with human skin: the role of the stratum corneum. Adv Drug Deliv Rev 18:303–309

    Article  CAS  Google Scholar 

  • Schmid MH, Korting HC (1994) Liposomes: a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst 11(2–3):97–118

    PubMed  CAS  Google Scholar 

  • Schnetz E, Fartasch M (2001) Microdialysis for the evaluation of penetration through the human skin barrier - a promising tool for future research? Eur J Pharm Sci 12(3):165–174

    Article  PubMed  CAS  Google Scholar 

  • Schubert R (2003) Liposome preparation by detergent removal. Methods Enzymol 367:46–70

    Article  PubMed  CAS  Google Scholar 

  • Schurtenberger J, Skrabal P, Hauser H (1976) Single bilayer vesicles prepared without sonication: physico chemical properties. Biochim Biophys Acta 455(2):322–331

    Article  Google Scholar 

  • Schurtenberger P, Mazer N, Waldvogel S, Kanzig W (1984) Preparation of monodisperse vesicles with variable size by dilution of mixed micellar solutions of bile salt and phosphatidylcholine. Biochim Biophys Acta 775(1):111–114

    Article  PubMed  CAS  Google Scholar 

  • Šentjurc M, Vrhovnik K, Kristl J (1999) Liposomes as a topical delivery system: the role of size on transport studied by the EPR imaging method. J Control Release 59:87–97

    Article  PubMed  Google Scholar 

  • Šentjurc M, Kristl J, Abramovic Z (2004) Transport of liposome entrapped substances into skin measured by electron paramagnetic resonance oximetry in vivo. Met Enzymol 387:267–287

    Article  Google Scholar 

  • Sessa G, Weissman G (1970) Incorporation of lysozyme into liposomes. J Biol Chem 245:3295–3301

    PubMed  CAS  Google Scholar 

  • Sessa G, Weissmann GJ (1968) Phospholipid spherules (liposomes) as a model for biological membranes. Lipid Res 9:310–318

    CAS  Google Scholar 

  • Shailesh S, Neelam S, Sandeep K, Gupta GD (2009) Liposomes: a review. J Pharm Res 2(7):1163–1167

    CAS  Google Scholar 

  • Shotton D, White N (1989) Confocal scanning microscopy: three-dimensional biological imaging. Trends Biochem Sci 14(11):435–439

    Article  PubMed  CAS  Google Scholar 

  • Šiler-Marinković S, Mojović Lj (1996) Oxidative stability of liposomes. 56th world congress of pharmacy 96, Jerusalem, 1–6 Sept 1996, p 144

    Google Scholar 

  • Šiler-Marinković S, Mojović Lj, Zaharijev J (1996) Stabilization of liposomes. Drugs after 2000, Belgrade, p 85

    Google Scholar 

  • Šiler-Marinković S, Mojović L, Davinić V, Bugarski B (1997) Liposome as carriers of antimicrobial drugs. Drug Dev Ind Pharm 23(5):483–488

    Article  Google Scholar 

  • Šobić B, Šiler Marinković S (2002) Stability of liposomes encapsulated with triterpenes from Centella asiatica. 3rd international conference of the Chemical Societies of the South-Eastern European Countries on “Chemistry in the New Millennium-an Endless Frontier”, Bucuresti, Sept 2002

    Google Scholar 

  • Szoka FJR, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatsuhiro I (2002) Liposome clearance. Biosci Rep 22(2):201–224

    Google Scholar 

  • Tholon L, Neliat G, Chesne C, Saboureau D, Perrier E, Branka JE (2002) An in vitro, ex vivo, and in vivo demonstration of the lipolytic effect of slimming liposomes: an unexpected a2-adrenergic antagonism. J Cosmet Sci 53:209–218

    PubMed  CAS  Google Scholar 

  • Tikshdeep C, Sonia A, Bharat P, Abhishek C (2012) Liposome drug delivery: a review. Int J Pharm Chem Sci 1(3):754–764

    Google Scholar 

  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000) Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65(3):403–418

    Google Scholar 

  • Trapasso E, Cosco D, Celia C, Fresta M, Paolino D (2009) Retinoids: new use by innovative drug-delivery systems. Expert Opin Drug Deliv 6:465–483

    Article  PubMed  CAS  Google Scholar 

  • Tsukagoshi K, Okumura Y, Nakajima R (1998) Migration behavior of dye stuff-containing liposomes in capillary–electrophoresis with chemiluminescence detection. J Chromatogr A 813:402–407

    Article  CAS  Google Scholar 

  • Vemuri S, Yu CD, Wangsatorntanakun V, Roosdorp N (1990) Large-scale production of liposomes by a microfluidizer. Drug Dev Ind Pharm 16(15):2243–2245

    Article  CAS  Google Scholar 

  • Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258:141–151

    Article  PubMed  CAS  Google Scholar 

  • Vrhovnik K, Kristl J, Sentjurc M, Smid-Korbar J (1998) Influence of liposome bilayer fluidity on the transport of encapsulated substances into the skin, studied by EPR. Pharm Res 15:525–530

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Vorauer-Uhl K (2011) Liposome technology for industrial purposes. J Drug Deliv 2011:1–9

    Google Scholar 

  • Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177

    Article  PubMed  CAS  Google Scholar 

  • Wallhaeusser KH (1995) Praxis der Sterilisation, Desinfektion – Konservierung, vol 43, 5th edn. Georg Thieme Verlag, Stuttgart, p 394

    Google Scholar 

  • Weiner N, Williams N, Birch G, Ramachandran C, Shipman C, Flynn G (1989) Topical delivery of liposomally encapsulated interferon evaluated in a cutaneous herpes guinea pig model. Antimicrob Agents Chemother 33:1217–1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wohlrab W, Lasch J, Laub R, Taube CM, Wellner K (1992) Distribution of liposome-encapsulated ingredients in human skin ex vivo. In: Falco OB, Korting HC, Maibach HI (eds) Liposome dermatics. Springer, Berlin, pp 217–225

    Google Scholar 

  • Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199

    Article  PubMed  CAS  Google Scholar 

  • Wu PC, Tsai YH, Liao CC, Chang JS, Huang YB (2004) The characterisation and biodistribution of cefoxitin-loaded liposomes. Int J Pharm 271:31–39

    Article  PubMed  CAS  Google Scholar 

  • Yarosh D (2001) Liposomes in investigative dermatology. Photodermatol Photoimmunol Photomed 17(5):203–212

    Article  PubMed  CAS  Google Scholar 

  • Yarosh D, Bucana C, Cox P, Alas L, Kibitel J, Kripke M (1994) Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol 103:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Patel AB, Graaf R, Behar K (2004) Determination of liposomal encapsulation efficiency using proton NMR spectroscopy. Chem Phys Lipids 127(1):113–120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavica Siler-Marinkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siler-Marinkovic, S. (2016). Liposomes as Drug Delivery Systems in Dermal and Transdermal Drug Delivery. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics