Skip to main content

Ökologie der Characeen

  • Chapter
  • First Online:
Armleuchteralgen

Zusammenfassung

Charophytes mainly occur in aquatic ecosystems with low nutrient concentrations where they can grow down to deepwater. Under eutrophic, turbid conditions, charophytes are severely light-limited because of their small hibernacles andbottom-dwelling growth form and therefore restricted to shallow water. Due to different mechanisms of osmoregulation andturgor regulation, salinity tolerances show major differences among single species. Also mechanisms of carbon assimilationdiffer substantially among species. Nitella spp. mainly occur in soft water, whereas manyspecies within the genus Chara can efficiently assimilate bicarbonate and are thereforesuperior competitors in calcium-rich water. While abiotic conditions such as light, salinity and carbon affect occurrenceand species composition of charophytes, these plants in turn have a major impact on their abiotic and biotic environment,especially in calcium-rich lakes where they can form dense vegetation. They accumulate and immobilize nutrients, reduceresuspension and enhance sedimentation, thereby improving light availability in the water column and causing conditions thatfavour their own occurrence. Allelopathic effect against micro-algae has been shown in the laboratory, but the quantitativeimportance of this mechanism in natural ecosystems is unknown. Several investigations indicate that charophyte vegetationmay have a lower refuge function for zooplankton against fish predation than other submerged macrophytes. Charophytes oftenharbour high macroinvertebrate densities. Their interactions with fish are complex. In charophyte-dominated lakes, waterfowlare favoured by high food availability (plants and macroinvertebrates) combined with high water clarity. Singleinvestigations show contradictory results concerning the grazing pressure of waterfowl on charophytes. Waterfowl have animportant function, however, for long-distant transport of charophyte oospores. Single species of charophytes apply fardifferent strategies of reproduction and dispersal. Annual species with high oospore production are typical pioneer plantsand mainly found in small, often temporary water bodies. Other species such as Nitellopsisobtusa have a high vegetative reproduction, but form oospores relatively rarely. Such species are restricted tolarger, permanent water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Der Begriff wintergrün wird hier verwendet, um deutlich zu machen, dass es sich um Pflanzen handelt, die mit grüner Biomasse überwintern und daher permanente Strukturen bieten. Der Begriff „perennierend“, der für submerse Makrophyten mit dieser Lebensstrategie oft verwendet wird, wird aufgrund von Diskrepanzen mit der terrestrischen Vegetationskunde hier vermieden. So werden Geophyten und Stauden, also Pflanzen, die mit unterirdischen Hibernakeln überwintern, zu den „perennierenden“ Pflanzen gezählt. Konsequenterweise müssten in der aquatischen Vegetationskunde Arten, die mit Wurzelknollen (z. B. Potamogeton pectinatus) oder Bulbillen (z. B. Nitellopsis obtusa) überwintern, ebenfalls als „perennierend“ bezeichnet werden.

Literatur

  • Badzinski SS, Ankney CD, Petrie SA (2006) Influence of migrant tundra swans (Cygnus columbianus) and Canada geese (Branta canadensis) on aquatic vegetation at Long Point, Lake Erie, Ontario. Hydrobiologia 567:195–211

    Google Scholar 

  • Bakker ES, Sarneel JM, Gulati RD, Liu Z, van Donk E (2013) Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710:23–37

    Google Scholar 

  • Becker R (2011) Dynamik und Konstanz der Grabenvegetation in den „Bornhorster Huntewiesen“ (Stadt Oldenburg, Oldb.) zwischen 1982 und 2010. Drosera 2011:11–34

    Google Scholar 

  • Beklioglu M, Moss B (1996a) Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biology 36:315–325

    Google Scholar 

  • Beklioglu M, Moss B (1996b) Existence of a macrophyte-dominated clearwater state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337:93–106

    CAS  Google Scholar 

  • Bengtsson L, Hellström T, Rakoczi L (1990) Redistribution of sediments in three Swedish lakes. Hydrobiologia 192:167–181

    Google Scholar 

  • Berger J, Schagerl M (2003) Allelopathic activity of Chara aspera. Hydrobiologia 501:109–115

    CAS  Google Scholar 

  • Berger J, Schagerl M (2004) Allelopathic activity of Characeae. Biologia 59:9–15

    Google Scholar 

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    CAS  Google Scholar 

  • Blindow I (1988) Phosphorus toxicity in Chara. Aquatic Botany 32:393–395

    CAS  Google Scholar 

  • Blindow I (1992a) Decline of Charophyta during eutrophication: a comparison to angiosperms. Freshwater Biology 28:9–14

    Google Scholar 

  • Blindow I (1992b) Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28:15–27

    Google Scholar 

  • Blindow I (2000) Distribution of Charophytes along the Swedish coast in relation to salinity and eutrophication. Internat Rev Hydrobiol 85:707–717

    Google Scholar 

  • Blindow I (2008) Åtgärdsprogram för bevarande av hotade kransalger. Naturvårdsverket, Stockholm (a. Arter i småvatten/periodiska vatten b. Arter i kalkrika sjöar)

    Google Scholar 

  • Blindow I, Hootsmans MJM (1991) Allelopathic effects from Chara spp. on two species of unicellular green algae. IHE Report Series 21:139–144

    Google Scholar 

  • Blindow I, Schütte M (2007) Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiologia 584:69–76

    Google Scholar 

  • Blindow I, Andersson G, Hargeby A, Johansson S (1993) Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30:159–167

    Google Scholar 

  • Blindow I, Dietrich J, Möllmann N, Schubert H (2003) Growth, photosynthesis and fertility of Chara aspera under different light and salinity conditions. Aquatic Botany 76:213–234

    CAS  Google Scholar 

  • Blindow I, Hargeby A, Andersson G (2002) Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72:315–334

    Google Scholar 

  • Blindow I, Hargeby A, Hilt S (2014) Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737:99–110

    CAS  Google Scholar 

  • Blindow I, Hargeby A, Wagner BMA, Andersson G (2000) How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44:185–197

    Google Scholar 

  • Blümel C (2004) Die Characeen in Mecklenburg-Vorpommern. Rostocker Meeresbiologische Beiträge 13:55–72

    Google Scholar 

  • Bonis A, Grillas P (2002) Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquatic Botany 72:235–248

    Google Scholar 

  • Box RJ (1986) Quantitative short-term uptake of inorganic phosphate by the Chara hispida rhizoid. Plant, Cell & Environment Volume 9:501–506

    CAS  Google Scholar 

  • Box RJ (1987) The uptake of nitrate and ammonium nitrogen in Chara hispida L. – the contribution of the rhizoid. Plant, Cell and Environment 10:169–176

    CAS  Google Scholar 

  • Brönmark C, Weisner SEB (1992) Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes – an alternative mechanism. Hydrobiologia 243/244:293–301

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hogson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634-639

    Google Scholar 

  • Chambers PA, Kalff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can J Fish Aquat Sci 42:701–709

    Google Scholar 

  • Clausen P, Nolet BA, Fox AD, Klaassen M (2002) Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe – a critical review of possibilities and limitations. Acta Oecol 23:191–203

    Google Scholar 

  • Crawford SA (1977) Chemical, physical and biological changes associated with Chara succession. Hydrobiologia 55:209–218

    Google Scholar 

  • Crowder LB, Cooper WE (1979) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813

    Google Scholar 

  • Declerck SAJ, Bakker ES, van Lith B, Kersbergen A, van Donk E (2011) Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology 12:466–475

    Google Scholar 

  • Dewart A (2010) Interannuelle Variation des Diasporenreservoirs und der submersen Makrophyten in den Boddengewässern Hiddensees. Diplomarbeit, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald

    Google Scholar 

  • Diehl S (1988) Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646–1661

    Google Scholar 

  • Dirksen S, van der Winden J (2002) Krooneend Netta rufina. In: SOVON (Hrsg) Vogelonderzoek Nederland 2002, Atlas van de Nederlandse Broedvogels 1998–2000. SOVON, Arnhem, S 134–135

    Google Scholar 

  • European Commission (2007) Management plan for red-crested pochard Netta rufina 2007–2009. Technical Report-005-2007. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biol 47:483–494

    Google Scholar 

  • Forsberg C (1965a) Ecological and physiological studies of Charophytes. Almqvist & Wiksells, Uppsala

    Google Scholar 

  • Forsberg C (1965b) Nutritional studies of Chara in axenic cultures. Physiologia Plantarum 18:275–290

    Google Scholar 

  • Frantz TC, Cordone AJ (1967) Observations on deepwater plants in Lake Tahoe, California and Nevada. Ecology 48:711–714

    Google Scholar 

  • Grimm MP, Backx JJGM (1990) The restoration of shallow eutrophic lakes and the role of northem pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201:557–566

    Google Scholar 

  • Hamann U (1999) Situationsbericht über die Armleuchteralgen (Charophyceae) Schleswig-Holsteins, Rote Liste der Armleuchteralgen Schleswig-Holsteins. Landesamt für Natur und Umwelt Schleswig-Holstein, Flintbeck

    Google Scholar 

  • Hamilton DP, Mitchell SF (1996) An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317:209–220

    Google Scholar 

  • Hargeby A (1990) Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57:338–346

    Google Scholar 

  • Hargeby A, Andersson G, Blindow I, Johansson S (1994) Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279/280:83–90

    Google Scholar 

  • Hargeby, A, Blindow I, Hansson L-A (2004) Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Arch Hydrobiol 161:433–454

    Google Scholar 

  • Hargeby A, Blom H, Blindow I, Andersson G (2005) Increased growth and recruitment of piscivorous perch, Perca fluviatilis, during a transient phase of expanding submerged vegetation in a shallow lake. Freshwater Biology 50:2053–2062

    Google Scholar 

  • Hasslow OJ (1931) Sveriges characéer. Botaniska Notiser 1931:63–136

    Google Scholar 

  • Henricsson M (1976) Nutritional studies of Chara globularis Thuill., Chara zeylanica Willd., and Chara haitensis Turpin. PhD Thesis, University of Uppsala, Uppsala

    Google Scholar 

  • Herr W, Todeskino D, Wiegleb G (1989) Übersicht über die Flora und Vegetation der niedersächsischen Fließgewässer unter besonderer Berücksichtigung von Naturschutz und Landschaftspflege. Naturschutz Landschaftspflege Niedersachsen 18:145–283

    Google Scholar 

  • Hidding B, Bakkera ES, Keupera F, de Boera T, de Vries PP, Nolet BA (2010) Differences in tolerance of pondweeds and charophytes to vertebrate herbivores in a shallow Baltic estuary. Aquatic Botany 93:123–128

    Google Scholar 

  • Higler LWG (1975) Analysis of the macrofauna community on Stratiotes vegetation. Verhandlungen der Internationalen Vereinigung für Limnologie 19:2773–2777

    Google Scholar 

  • Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9:422–432

    Google Scholar 

  • Hilt S, Henschke I, Rücker J, Nixdorf B (2010) Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. Journal of Environmental Quality 39:725–733

    CAS  PubMed  Google Scholar 

  • Idestam-Almqvist J (2000) Dynamics of submersed aquatic vegetation on shallow soft bottoms in the Baltic Sea. J Veg Sci 11:425–432

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408/409:217–231

    CAS  Google Scholar 

  • Jeppesen E, Lauridsen T, Kairesalo T, Perrow M (1998) Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (Hrsg) The structuring role of submerged macrophytes in lakes. Springer, New York, S 91–114

    Google Scholar 

  • Jones JI, Sayer C (2003) Does fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84:2155–2167

    Google Scholar 

  • Jones JI, Moss B, Young JO (1998) The interactions between periphyton, non molluscan invertebrates, and fish in standing freshwaters. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (Hrsg) The structuring role of submerged macrophytes in lakes. Springer, New York, S 69–90

    Google Scholar 

  • Karabin A, Ejsmont-Karabin J, Kornatowska R (1997) Eutrophication processes in a shallow, macrophyte-dominated lake – factors influencing zooplankton structure and density in Lake Luknajno (Poland). Hydrobiologia 342/343:401–409

    Google Scholar 

  • Kohler A, Brinkmeier R, Vollrath H (1974) Verbreitung und Indikatorwert der submersen Makrophyten in den Fließgewässern der Friedberger Au. Ber Bayer Bot Ges 45:5–36

    Google Scholar 

  • Körner S, Dugdale T (2003) Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes? Hydrobiologia 506:497–501

    Google Scholar 

  • Korsch H, Doege A, Raabe U, van de Weyer K (2013) Rote Liste der Armleuchteralgen (Charophyceae) Deutschlands, 3. Fassung, Stand: Dezember 2012. Haussknechtia, Jena

    Google Scholar 

  • Krause W (1985) Über die Standortansprüche und das Ausbreitungsverhalten der Stern-Armleuchteralge Nitellopsis obtusa (Desvaux) J. Groves. Carolinea 42:1–42

    Google Scholar 

  • Krause W (1997) Charales (Charophyceae). In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (Hrsg) Süßwasserflora von Mitteleuropa, Bd. 18. Gustav Fischer, Jena

    Google Scholar 

  • Krecker FH (1939) A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20:553–562

    Google Scholar 

  • Kuczynska-Kippen N (2008) Spatio-temporal segregation of cladocerans within a Chara hispida bed. Journal of Freshwater Ecology 23:643–650

    Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes – a review. Aquatic Botany 72:249–260

    Google Scholar 

  • Lauridsen T, Pedersen LJ, Jeppesen E, Søndergaard M (1996) The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18:2283–2294

    Google Scholar 

  • Luther H (1951) Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland. II. Spezieller Teil. Acta Bot Fenn 50:1–370

    Google Scholar 

  • Matuszak A, Mörtl M, Quillfeldt P, Bauer HG (2012) Exclosure study on the exploitation of macrophytes by summering and moulting waterbirds at Lower Lake Constance. Hydrobiologia 697:31–44

    CAS  Google Scholar 

  • Migula W (1897) Die Characeen Deutschlands, Oesterreichs und der Schweiz. Eduard Kummer, Leipzig

    Google Scholar 

  • Milberg P, Gezelius L, Blindow I, Nilsson L, Tyrberg T (2002) Long-term variation in waterfowl community composition during autumn in Lake Tåkern, southern Sweden. Ornis Fennica 79:72–81

    Google Scholar 

  • Mitchell SF, Wass RT (1996) Grazing by black swans (Cygnus atratus Latham), physical factors, and the growth and loss of aquatic vegetation in a shallow lake. Aquatic Botany 55:205–215

    Google Scholar 

  • Moore JA (1986) Charophyta of Great Britain and Ireland BSBI Handbook, Bd. 5. London

    Google Scholar 

  • Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201:367–377

    Google Scholar 

  • Mulderij G, van Donk E, Roelofs JGM (2003) Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491:261–271

    Google Scholar 

  • Mulderij G, van Nes E, van Donk E (2007) Macrophyte – phytoplankton interactions: The relative importance of allelopathy versus other factors. Ecological Modelling 204:85–92

    Google Scholar 

  • Nichols SJ, Schloesser DW, Geis JW (1988) Seasonal growth of the exotic submersed macrophyte Nitellopsis obtusa in the Detroit River of the Great Lakes, Usa, Canada. Can J Bot 66:116–118

    Google Scholar 

  • Nõges P, Tuvikene L, Feldmann T, Tõnno I, Künnap H, Luup H, Salujõe J, Nõges T (2003) The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia 506–509:567–573

    Google Scholar 

  • Noordhuis R, van der Molen DT, van den Berg MS (2002) Response of herbivorous water-birds to the return of Chara in Lake Veluwemeer, The Netherlands. Aquatic Botany 72:349–367

    Google Scholar 

  • Olsen S (1944) Danish Charophyta. Kgl. Danske Vid. Selsk., Biol. Skr. 3

    Google Scholar 

  • Otsuki A, Wetzel RG (1972) Coprecipitation of phosphate with carbonates in a marl rich lake. Limnology & Oceanography 17:763–767

    CAS  Google Scholar 

  • Pereya-Ramos E (1981) The ecological role of Characeae in the lake littoral. Ekologia Polska 29:167–209

    Google Scholar 

  • Phillips GL, Eminson D, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4:103–126

    Google Scholar 

  • Proctor VW (1962) Viability of Chara oospores taken from migratory birds. Ecology 43:528–529

    Google Scholar 

  • Ray S, Klenell M, Choo K-S, Pedersén M, Snoeijs P (2003) Carbon acquisition mechanisms in Chara tomentosa. Aquatic Botany 76:141–154

    CAS  Google Scholar 

  • Rip WJ, Rawee N, de Jong A (2006) Alternation between clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds. Aquatic Botany 85:184–190

    Google Scholar 

  • Samuelsson G (1925) Untersuchungen über die höhere Wasserflora von Dalarne. Svenska Växtsociol Sällsk Handl 9:1–31

    Google Scholar 

  • Scheffer M (1990) Multiplicity of alternative stable states in freshwater systems. Hydrobiologia 200/201:475–486

    Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8:275–279

    CAS  Google Scholar 

  • Scheffer M, van den Berg MS, Breukelaar AW, Breukers CPM, Coops H, Doef RW, Meijer M-L (1994) Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49:193–196

    Google Scholar 

  • Schmieder K, Werner S, Bauer HG (2006) Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany 84:245–250

    Google Scholar 

  • Schubert H, Blindow I (Hrsg) (2003) Charophytes of the Baltic Sea. Gantner, Ruggell

    Google Scholar 

  • Schulze T, Baade U, Dörner H, Eckmann R, Haertel-Borer SS, Hölker F, Mehner T (2006) Interactions of residential piscivores with an introduced new predator type in a mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 63:2202–2212

    Google Scholar 

  • Schütte M (2003) Wuchs- und Lebensformen bei Armleuchteralgen (Chara aspera) in Abhängigkeit von Salinität und Tiefe. Diplomarbeit, Universität Greifswald, Greifswald

    Google Scholar 

  • Simons J, Ohm M, Daalder R, Boers P, Rip W (1994) Restoration of Botshol (The Netherlands) by reduction of external nutrient load: recovery of a characean community, dominated by Chara connivens. Hydrobiologia 275/276:243–253

    Google Scholar 

  • Siong K, Asaeda T (2006) Does calcite encrustation in Chara provide a phosphorus nutrient sink? Journal of Environmental Quality 35:490–494

    CAS  PubMed  Google Scholar 

  • Stansfield J, Perrow MR, Tench LD, Jowitt AJD, Taylor AAL (1997) Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343:229–240

    Google Scholar 

  • Tåkerns Fältstation 2012. Årsrapport 2012. Mjölby

    Google Scholar 

  • Tamisier A (1988) The diet of red crested pochards Netta rufina wintering in the Camargue France. Revue D’Ecologie – la Terre et la Vie 43:167–176

    Google Scholar 

  • Ten Winkel EH, Meulemans JT (1984) Effects of cyprinid fish on submerged vegetation. Hydrobiological Bulletin 18:157–158

    Google Scholar 

  • Timms RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanography 29:472–486

    Google Scholar 

  • van de Weyer K (2008) Fortschreibung des Bewertungsverfahrens für Makrophyten in Fließgewässern in Nordrhein-Westfalen gemäß den Vorgaben der EG-Wasser-Rahmen-Richtlinie. LANUV, Recklinghausen

    Google Scholar 

  • van de Weyer K, Krautkrämer V (2009) Nitella opaca (Bruzelius) Agardh im Steinbruch Messinghausen (Sauerland) – mit einer Übersicht der maximalen unteren Makrophyten-Tiefengrenzen in Deutschland. Rostocker Meeresbiologische Beiträge 22:57–64

    Google Scholar 

  • van de Weyer K, Schmidt C (2011) Bestimmungsschlüssel für die aquatischen Makrophyten (Gefäßpflanzen, Armleuchteralgen und Moose) in Deutschland, Bd. 1. Landesamt für Umwelt, Gesundheit und Verbraucherschutz (LUGV) Brandenburg, Potsdam

    Google Scholar 

  • van den Berg MS, Coops H, Meijer M-L, Scheffer M, Simons J (1998) Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (Hrsg) The structuring role of submerged macrophytes in lakes. Springer, New York, S 339–352

    Google Scholar 

  • van den Berg MS, Coops H, Simons J (2001) Propagule bank buildup of Chara aspera and its significance for colonization of a shallow lake. Hydrobiologia 462:9–17

    Google Scholar 

  • van den Berg MS, Coops H, Simons J, Pilon J (2002) A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany 72:219–233

    Google Scholar 

  • Van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72:261–274

    Google Scholar 

  • Villena MJ, Romo S (2007) Effects of nutrients, fish, charophytes and algal sediment recruitment on the phytoplankton ecology of a shallow lake. International Revue of Hydrobiology 92:626–639

    Google Scholar 

  • Wahlstedt LJ (1864) Om characeernas knoppar och öfvervintring. University of Lund, Lund

    Google Scholar 

  • Westermann K, Andris K, Boschert M, Gabler E, Hurst J, Meßmer K, Müller G (2006) Brutverbreitung, Brutbestand und Bestandsveränderungen des Höckerschwans (Cygnus olor) am südbadischen Oberrhein und westlichen Hochrhein. Naturschutz südlicher Oberrhein 4:197–212

    Google Scholar 

  • Winter U, Kirst GO (1990) Salinity response of a freshwater charophyte, Chara vulgaris. Plant Cell Environ 13:123–134

    CAS  Google Scholar 

  • Winter U, Soulié-Märsche I, Kirst GO (1996) Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant, Cell and Environment 19:869–878

    Google Scholar 

  • Winter U, Kirst GO, Grabowski V, Heineman U, Plettner I, Wiese S (1999) Salinity tolerance in Nitellopsis obtusa. Austral J Bot 47:337–346

    Google Scholar 

  • Wium-Andersen S, Anthoni U, Christophersen C, Houen G (1982) Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39:187–190

    Google Scholar 

  • Wüstenberg A, Pörs Y, Ehwald R (2011) Culturing of stoneworts and submersed angiosperms with phosphate uptake exclusively from an artificial sediment. Freshwater Biology 56:1531–1539

    Google Scholar 

  • Zhang TT, He M, Wu AP, Nie LW (2009) Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopathy Journal 23:391–402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blindow, I., van de Weyer, K. (2016). Ökologie der Characeen. In: Armleuchteralgen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47797-7_7

Download citation

Publish with us

Policies and ethics