Skip to main content

Interactive Proofs with Approximately Commuting Provers

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

  • 2603 Accesses

Abstract

The class \(\mathrm {MIP}^*\) of promise problems that can be decided through an interactive proof system with multiple entangled provers provides a complexity-theoretic framework for the exploration of the nonlocal properties of entanglement. Very little is known in terms of the power of this class. The only proposed approach for establishing upper bounds is based on a hierarchy of semidefinite programs introduced independently by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to a value, the field-theoretic value, that is only known to coincide with the provers’ maximum success probability in a given proof system under a plausible but difficult mathematical conjecture, Connes’ embedding conjecture. No bounds on the rate of convergence are known.

We introduce a rounding scheme for the hierarchy, establishing that any solution to its \(N\)-th level can be mapped to a strategy for the provers in which measurement operators associated with distinct provers have pairwise commutator bounded by \(O(\ell ^2/\sqrt{N})\) in operator norm, where \(\ell \) is the number of possible answers per prover.

Our rounding scheme motivates the introduction of a variant of quantum multiprover interactive proof systems, called \(\mathrm {MIP}_\delta ^*\), in which the soundness property is required to hold against provers allowed to operate on the same Hilbert space as long as the commutator of operations performed by distinct provers has norm at most \(\delta \). Our rounding scheme implies the upper bound \(\mathrm {MIP}_\delta ^* \subseteq \mathrm {DTIME}(\exp (\exp ({{\mathrm{poly}}})/\delta ^2))\). In terms of lower bounds we establish that \(\mathrm {MIP}^*_{2^{-{{\mathrm{poly}}}}}\) contains \(\mathrm {NEXP}\) with completeness \(1\) and soundness \(1-2^{-{{\mathrm{poly}}}}\). We discuss connections with the mathematical literature on approximate commutation and applications to device-independent cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aravind, P.K.: The magic squares and Bell’s theorem. Technical report (2002 arXiv:quant-ph/0206070

  3. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. John, S.: Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complexity 1, 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assumptions. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 113–131 (1988)

    Google Scholar 

  7. Bancal, J.-D., Sheridan, L., Scarani, V.: More randomness from the same data. New Journal of Physics 16(3), 033011 (2014)

    Article  Google Scholar 

  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  Google Scholar 

  9. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proc. 19th IEEE Conf. on Computational Complexity (CCC 2004), pp. 236–249. IEEE Computer Society (2004)

    Google Scholar 

  10. Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and ..., 1–11 (2011)

    Google Scholar 

  11. Connes, A.: Classification of injective factors cases \(ii_1\), \(ii_\infty \), \(iii_\lambda \), \(\lambda \ne 1\). Annals of Mathematics 104(1), 73–115 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Doherty, A.C., Liang, Y-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proc. 23rd IEEE Conf. on Computational Complexity (CCC 2008), pp. 199–210 (2008)

    Google Scholar 

  13. Exel, R., Loring, T.: Almost commuting unitary matrices. In: Proceedings of the American Mathematical Society 106(4), 913–915 (1989)

    Google Scholar 

  14. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777–780 (1935)

    Article  MATH  Google Scholar 

  15. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover one-round interactive proofs against nonlocal strategies. In: Proc. 24th IEEE Conf. on Computational Complexity (CCC 2009), pp. 217–228. IEEE Computer Society (2009)

    Google Scholar 

  17. Ito, T., Vidick, T., A multi-prover interactive proof for NEXP sound against entangled provers. In: Proc. 53rd FOCS, pp. 243–252 (2012)

    Google Scholar 

  18. Junge, M., Navascues, M., Palazuelos, C., Perez-Garcia, D., Scholz, V.B., Werner, R.F.: Connes’ embedding problem and tsirelson’s problem. J. Math. Physics 52(1) (2011)

    Google Scholar 

  19. Kirchberg, E.: On non-semisplit extensions, tensor products and exactness of group \({C}^*\)-algebras. Inventiones mathematicae 112(1), 449–489 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobayashi, H., Matsumoto, K.: Quantum multi-prover interactive proof systems with limited prior entanglement. Journal of Computer and System Sciences 66(3), 429–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kempe, J., Regev, O., Toner, B.: Unique games with entangled provers are easy. SIAM J. Comput. 39(7), 3207–3229 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 Programming. Mathematics of Operations Research 28(3), 470–496 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ll. Masanes. Extremal quantum correlations for n parties with two dichotomic observables per site. Technical report (2005). arXiv:quant-ph/0512100

  24. Miller, C.A., Shi, Y.: Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices. In: Proc. 46th STOC. ACM New York (2014)

    Google Scholar 

  25. Navascués, M., Pironio, S., Acín, A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007)

    Article  Google Scholar 

  26. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10(073013) (2008)

    Google Scholar 

  27. Ozawa, N.: Tsirelson’s problem and asymptotically commuting unitary matrices. Journal of Mathematical Physics 54(3) (2013)

    Google Scholar 

  28. Pironio, S., Acín, A., Massar, S.: Random numbers certified by Bell’s theorem. Nature, 1–26 (2010)

    Google Scholar 

  29. Pál, K.F., Vértesi, T.: Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems. Phys. Rev. A 82, 022116 (2010)

    Article  Google Scholar 

  30. Silman, J., Pironio, S., Massar, S.: Device-independent randomness generation in the presence of weak cross-talk. Phys. Rev. Lett. 110, 100504 (2013)

    Article  Google Scholar 

  31. Scholz, V.B., Werner, R.F.: Tsirelson’s problem. Technical report (2008). arXiv:0812.4305v1 [math-ph]

  32. Vidick, T.: Three-player entangled XOR games are NP-hard to approximate. In: Proc. 54th FOCS (2013)

    Google Scholar 

  33. Voiculescu, D.: Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci. Math. (Szeged) 45, 429–431 (1983)

    MATH  MathSciNet  Google Scholar 

  34. Yang, T.H., Vertesi, T., Bancal, J-D., Scarani, V., Navascues, M.: Robust and Versatile Black-Box Certification of Quantum Devices. Phys. Rev. Lett. 113(4), (July 22, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Coudron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coudron, M., Vidick, T. (2015). Interactive Proofs with Approximately Commuting Provers. In: HalldĂłrsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics