Skip to main content

Molecular Principles of Adhesion and Biofilm Formation

  • Chapter
Book cover The Root Canal Biofilm

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 9))

Abstract

Oral bacteria are responsible for oral health and disease, including caries, periodontal disease, and endodontic infections. The development of oral diseases is intimately linked with the ability of oral bacteria to form and reside in an adherent multispecies consortium named biofilm. The oral biofilm provides a protective environment for the bacterial community and its formation is a genetically controlled process. In this chapter, we present a general overview of developmental mechanisms employed by individual members of the oral biofilm. The species composition of the oral biofilm and the oral microbiome is discussed historically and in the context of newly developed next-generation sequencing techniques. Furthermore, biofilm-specific regulatory mechanisms and phenotypic traits are explained to provide the reader with a comprehensive overview of oral biofilm formation and its role in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed Central  PubMed  Google Scholar 

  • Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aguirre A, Levine MJ, Cohen RE, Tabak LA (1987) Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. Arch Oral Biol 32:297–301

    Article  CAS  PubMed  Google Scholar 

  • Allison KR, Brynildsen MP, Collins JJ (2011) Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amano A (2003) Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol 74:90–96

    Article  CAS  PubMed  Google Scholar 

  • Amano A, Kuboniwa M, Nakagawa I, Akiyama S, Morisaki I, Hamada S (2000) Prevalence of specific genotypes of Porphyromonas gingivalis fimA and periodontal health status. J Dent Res 79:1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768–775

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah TF (2012) The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 194:3128–3136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33:248–255

    Article  PubMed  Google Scholar 

  • Belibasakis GN, Guggenheim B, Bostanci N (2012) Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis. Innate Immun 19(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Benitez-Paez A, Belda-Ferre P, Simon-Soro A, Mira A (2014) Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics 15:311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet 2:497–500

    Article  Google Scholar 

  • Bik EM, Long CD, Armitage GC et al (2010) Bacterial diversity in the oral cavity. ISME J. 4(8):962–974

    Google Scholar 

  • Bizzini A, Beggah-Moller S, Moreillon P, Entenza JM (2006) Lack of in vitro biofilm formation does not attenuate the virulence of Streptococcus gordonii in experimental endocarditis. FEMS Immunol Med Microbiol 48:419–423

    Article  CAS  PubMed  Google Scholar 

  • Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF (2010) The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu Rev Microbiol 60:451–475

    Article  CAS  PubMed  Google Scholar 

  • Coenye T (2010) Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. FEMS Immunol Med Microbiol 59:239–252

    CAS  PubMed  Google Scholar 

  • Consortium HMP (2012a) A framework for human microbiome research. Nature 486:215–221

    Article  CAS  Google Scholar 

  • Consortium HMP (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  CAS  Google Scholar 

  • Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Cowan MM, Taylor KG, Doyle RJ (1987) Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J Bacteriol 169:2995–3000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cvitkovitch DG (2001) Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med 12:217–243

    Article  CAS  PubMed  Google Scholar 

  • Davies JR, Svensater G, Herzberg MC (2009) Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology 155:1977–1988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demuth DR, Irvine DC, Costerton JW, Cook GS, Lamont RJ (2001) Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect Immun 69:5736–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng H, Ding Y, Fu MD, Xiao XR, Liu J, Zhou T (2004) Purification and characterization of sanguicin–a bacteriocin produced by Streptococcus sanguis. Sichuan Da Xue Xue Bao Yi Xue Ban 35:555–558

    CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Ryan LK (2008) Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 87:915–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37:2522–2526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egland PG, Palmer RJ Jr, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101:16917–16922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engels-Deutsch M, Pini A, Yamashita Y, Shibata Y, Haikel Y, Scholler-Guinard M, Klein JP (2003) Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells. Infect Immun 71:5169–5177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engels-Deutsch M, Rizk S, Haikel Y (2011) Streptococcus mutans antigen I/II binds to alpha5beta1 integrins via its A-domain and increases beta1 integrins expression on periodontal ligament fibroblast cells. Arch Oral Biol 56:22–28

    Article  CAS  PubMed  Google Scholar 

  • Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci USA 111:E2875–E2884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Frias-Lopez J, Duran-Pinedo A (2012) Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 194:2082–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujimura S, Nakamura T (1979) Sanguicin, a bacteriocin of oral Streptococcus sanguis. Antimicrob Agents Chemother 16:262–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong K, Mailloux L, Herzberg MC (2000) Salivary film expresses a complex, macromolecular binding site for Streptococcus sanguis. J Biol Chem 275:8970–8974

    Article  CAS  PubMed  Google Scholar 

  • Gorr SU (2012) Antimicrobial peptides in periodontal innate defense. Front Oral Biol 15:84–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27(6):409–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall AR (1989) The Leeuwenhoek lecture, 1988. Antoni van Leeuwenhoek 1632–1723. Notes Rec R Soc Lond 43:249–273

    Article  Google Scholar 

  • Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, William Costerton J, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145

    Article  CAS  PubMed  Google Scholar 

  • Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13

    Article  CAS  PubMed  Google Scholar 

  • Hasty DL, Ofek I, Courtney HS, Doyle RJ (1992) Multiple adhesins of streptococci. Infect Immun 60:2147–2152

    PubMed Central  CAS  PubMed  Google Scholar 

  • He X, Ahn J (2011) Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. FEMS Microbiol Lett 325:180–188

    Article  CAS  PubMed  Google Scholar 

  • He X, Wu C, Yarbrough D, Sim L, Niu G, Merritt J, Shi W, Qi F (2008) The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 70:112–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He X, Hu W, He J, Guo L, Lux R, Shi W (2011) Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Mol Oral Microbiol 26:337–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Hodgson R, van’t Hof W, Veerman EC, Allison C, Nieuw Amerongen AV (1999) The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 78:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Heng NC, Tagg JR, Tompkins GR (2007) Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis). J Bacteriol 189:1468–1472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  CAS  PubMed  Google Scholar 

  • Holmes AR, Gilbert C, Wells JM, Jenkinson HF (1998) Binding properties of Streptococcus gordonii SspA and SspB (antigen I/II family) polypeptides expressed on the cell surface of Lactococcus lactis MG1363. Infect Immun 66:4633–4639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itzek A, Zheng L, Chen Z, Merritt J, Kreth J (2011) Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 193:6912–6922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE (2008a) Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190:3646–3657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE (2008b) Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 66:637–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakubovics NS, Brittan JL, Dutton LC, Jenkinson HF (2009) Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin. Microbiology 155:3572–3580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakubovics NS, Yassin SA, Rickard AH (2014) Community interactions of oral streptococci. Adv Appl Microbiol 87:43–110

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson HF, Lamont RJ (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8:175–200

    Article  CAS  PubMed  Google Scholar 

  • Johnsborg O, Havarstein LS (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627–642

    Article  CAS  PubMed  Google Scholar 

  • Johnsborg O, Eldholm V, Havarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778

    Article  CAS  PubMed  Google Scholar 

  • Jonas K, Melefors O, Romling U (2009) Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 4:341–358

    Article  CAS  PubMed  Google Scholar 

  • Kader A, Simm R, Gerstel U, Morr M, Romling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34:737–751

    Article  CAS  PubMed  Google Scholar 

  • Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH, Hamaker BR, Lemos JA, Koo H (2010) Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS ONE 5, e13478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 13:108–125

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreth J, Merritt J, Shi W, Qi F (2005a) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreth J, Merritt J, Shi W, Qi F (2005b) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreth J, Vu H, Zhang Y, Herzberg MC (2009) Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol 191:6281–6291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kristian SA, Birkenstock TA, Sauder U, Mack D, Gotz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035

    Article  PubMed  Google Scholar 

  • Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96:14547–14552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, Shizukuishi S, Lamont RJ (2006) Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol 60:121–139

    Article  CAS  PubMed  Google Scholar 

  • Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380

    Article  CAS  PubMed  Google Scholar 

  • Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344

    Article  CAS  PubMed  Google Scholar 

  • Labat-Robert J (2012) Cell-Matrix interactions, the role of fibronectin and integrins. A survey Pathol Biol (Paris) 60:15–19

    Article  CAS  Google Scholar 

  • Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamkin MS, Oppenheim FG (1993) Structural features of salivary function. Crit Rev Oral Biol Med 4:251–259

    CAS  PubMed  Google Scholar 

  • Lee MS, Morrison DA (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181:5004–5016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lei Y, Zhang Y, Guenther BD, Kreth J, Herzberg MC (2011) Mechanism of adhesion maintenance by methionine sulphoxide reductase in Streptococcus gordonii. Mol Microbiol 80:726–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Li L, Tanzer JM, Scannapieco FA (2002a) Identification and analysis of the amylase-binding protein B (AbpB) and gene (abpB) from Streptococcus gordonii. FEMS Microbiol Lett 212:151–157

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002b) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liljemark WF, Bloomquist CG, Ofstehage JC (1979) Aggregation and adherence of Streptococcus sanguis: role of human salivary immunoglobulin A. Infect Immun 26:1104–1110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liljemark WF, Bloomquist CG, Germaine GR (1981) Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite. Infect Immun 31:935–941

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Lamont RJ, Wu J, Xie H (2008) Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J Bacteriol 190:4367–4371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindh L (2002) On the adsorption behaviour of saliva and purified salivary proteins at solid/liquid interfaces. Swed Dent J Suppl 1–57

    Google Scholar 

  • Liu Y, Burne RA (2011) The major autolysin of Streptococcus gordonii is subject to complex regulation and modulates stress tolerance, biofilm formation, and extracellular-DNA release. J Bacteriol 193:2826–2837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda K, Nagata H, Kuboniwa M, Kataoka K, Nishida N, Tanaka M, Shizukuishi S (2004a) Characterization of binding of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase to Porphyromonas gingivalis major fimbriae. Infect Immun 72:5475–5477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda K, Nagata H, Nonaka A, Kataoka K, Tanaka M, Shizukuishi S (2004b) Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae. Microbes Infect 6:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S (2004c) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect Immun 72:1341–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  • Marquis RE (1995) Oxygen metabolism, oxidative stress and acid–base physiology of dental plaque biofilms. J Ind Microbiol 15:198–207

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (2009) Dental plaque as a biofilm: the significance of pH in health and caries. Compend Contin Educ Dent 30:76–78, 80, 83–77; quiz 88, 90

    PubMed  Google Scholar 

  • Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H (2012) Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 27:124–135

    Article  CAS  PubMed  Google Scholar 

  • McNab R, Lamont RJ (2003) Microbial dinner-party conversations: the role of LuxS in interspecies communication. J Med Microbiol 52:541–545

    Article  CAS  PubMed  Google Scholar 

  • McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merritt J, Qi F (2012) The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27:57–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Iwahashi H, Yasuda H, Umemoto T, Namikawa I, Kitano S, Hanazawa S (1996) Porphyromonas gingivalis fimbrillin is one of the fibronectin-binding proteins. Infect Immun 64:2571–2576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naito Y, Gibbons RJ (1988) Attachment of Bacteroides gingivalis to collagenous substrata. J Dent Res 67:1075–1080

    Article  CAS  PubMed  Google Scholar 

  • Naito M, Hirakawa H, Yamashita A et al (2008) Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 15:215–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura T, Amano A, Nakagawa I, Hamada S (1999) Specific interactions between Porphyromonas gingivalis fimbriae and human extracellular matrix proteins. FEMS Microbiol Lett 175:267–272

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PT, Abranches J, Phan TN, Marquis RE (2002) Repressed respiration of oral streptococci grown in biofilms. Curr Microbiol 44:262–266

    Article  CAS  PubMed  Google Scholar 

  • Nobbs AH, Vajna RM, Johnson JR, Zhang Y, Erlandsen SL, Oli MW, Kreth J, Brady LJ, Herzberg MC (2007a) Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology 153:4088–4097

    Article  CAS  PubMed  Google Scholar 

  • Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC (2007b) Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 189:3106–3114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450, Table of Contents

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nobbs AH, Jenkinson HF, Jakubovics NS (2011) Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 90:1271–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okahashi N, Nakata M, Sakurai A et al (2010) Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 391:1192–1196

    Article  CAS  PubMed  Google Scholar 

  • Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219

    Article  CAS  PubMed  Google Scholar 

  • Orstavik D, Kraus FW (1973) The acquired pellicle: immunofluorescent demonstration of specific proteins. J Oral Pathol 2:68–76

    Article  CAS  PubMed  Google Scholar 

  • Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000(42):80–87

    Article  Google Scholar 

  • Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM (2009) Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC, Schork NJ, Bretz WA (2014) Functional expression of dental plaque microbiota. Front Cell Infect Microbiol 4:108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi F, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi F, Chen P, Caufield PW (2001) The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Article  CAS  PubMed  Google Scholar 

  • Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36(5):972–989

    Article  CAS  PubMed  Google Scholar 

  • Rho M, Wu YW, Tang H, Doak TG, Ye Y (2012) Diverse CRISPRs evolving in human microbiomes. PLoS Genet 8, e1002441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456

    Article  CAS  PubMed  Google Scholar 

  • Roberts AP, Kreth J (2014) The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front Cell Infect Microbiol 4:124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T (2011) Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol 26:99–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607

    Article  CAS  PubMed  Google Scholar 

  • Scannapieco FA, Bhandary K, Ramasubbu N, Levine MJ (1990) Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun 173:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Schlegel R, Slade HD (1972) Bacteriocin production by transformable group H streptococci. J Bacteriol 112:824–829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scragg MA, Cannon SJ, Rangarajan M, Williams DM, Curtis MA (1999) Targeted disruption of fibronectin-integrin interactions in human gingival fibroblasts by the RI protease of Porphyromonas gingivalis W50. Infect Immun 67:1837–1843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sedlacek MJ, Walker C (2007) Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 22:333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shemesh M, Tam A, Steinberg D (2007) Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661

    Article  PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Article  CAS  PubMed  Google Scholar 

  • Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42:409–418

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ebara S, Otsuka K, Hayashi K (1996) Adsorption of saliva-coated and plain streptococcal cells to the surfaces of hydroxyapatite beads. Arch Oral Biol 41:505–508

    Article  CAS  PubMed  Google Scholar 

  • Tanzer JM, Grant L, Thompson A, Li L, Rogers JD, Haase EM, Scannapieco FA (2003) Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats' teeth by Streptococcus gordonii. Microbiology 149:2653–2660

    Article  CAS  PubMed  Google Scholar 

  • Taxman DJ, Huang MT, Ting JP (2010) Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8:7–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thurlow LR, Hanke ML, Fritz T et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thurnheer T, Gmur R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69:1702–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torlakovic L, Klepac-Ceraj V, Ogaard B, Cotton SL, Paster BJ, Olsen I (2012) Microbial community succession on developing lesions on human enamel. J Oral Microbiol 4

    Google Scholar 

  • Tribble GD, Rigney TW, Dao DH, Wong CT, Kerr JE, Taylor BE, Pacha S, Kaplan HB (2012) Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. MBio 3

    Google Scholar 

  • Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci USA 108:4152–4157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van der Waaij D, Berghuis-de Vries JM, Lekkerkerk L-v (1971) Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69:405–411

    Article  Google Scholar 

  • van Houte J (1994) Role of micro-organisms in caries etiology. J Dent Res 73:672–681

    PubMed  Google Scholar 

  • Vernier-Georgenthum A, al-Okla S, Gourieux B, Klein JP, Wachsmann D (1998) Protein I/II of oral viridans streptococci increases expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro. Cell Immunol 187:145–150

    Article  CAS  PubMed  Google Scholar 

  • Vickerman MM, Iobst S, Jesionowski AM, Gill SR (2007) Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189:7799–7807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Ohle C, Gieseke A, Nistico L, Decker EM, DeBeer D, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76:2326–2334

    Article  CAS  Google Scholar 

  • Vorrasi J, Chaudhuri B, Haase EM, Scannapieco FA (2010) Identification and characterization of amylase-binding protein C from Streptococcus mitis NS51. Mol Oral Microbiol 25:150–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker TS, Tomlin KL, Worthen GS et al (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ween O, Gaustad P, Havarstein LS (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33:817–827

    Article  CAS  PubMed  Google Scholar 

  • Wei GX, Campagna AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109

    Article  CAS  PubMed  Google Scholar 

  • Whatmore AM, Barcus VA, Dowson CG (1999) Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol 181:3144–3154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu YW, Rho M, Doak TG, Ye Y (2012) Oral spirochetes implicated in dental diseases are widespread in normal human subjects and carry extremely diverse integron gene cassettes. Appl Environ Microbiol 78:5288–5296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu P, Alves JM, Kitten T et al (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189:3166–3175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan W, Qu T, Zhao H, Su L, Yu Q, Gao J, Wu B (2010) The effect of c-di-GMP (3'-5'-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans. Microbiol Res 165:87–96

    Article  CAS  PubMed  Google Scholar 

  • Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Lei Y, Khammanivong A, Herzberg MC (2004) Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect Immun 72:3489–3494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Lei Y, Nobbs A, Khammanivong A, Herzberg MC (2005) Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes. Infect Immun 73:3351–3357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Whiteley M, Kreth J, Lei Y, Khammanivong A, Evavold JN, Fan J, Herzberg MC (2009) The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology 155:165–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng L, Itzek A, Chen Z, Kreth J (2011a) Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol 77:4318–4328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng LY, Itzek A, Chen ZY, Kreth J (2011b) Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Zhang Y, Fan J, Herzberg MC, Kreth J (2011) Characterization of competence and biofilm development of a Streptococcus sanguinis endocarditis isolate. Mol Oral Microbiol 26:117–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ labs that is referred to in this chapter was supported by NIH-NIDCR R01DE021726, R00DE018400 and R03DE022601 (JK) and R01DE08590 (MCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kreth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreth, J., Herzberg, M.C. (2015). Molecular Principles of Adhesion and Biofilm Formation. In: Chávez de Paz, L., Sedgley, C., Kishen, A. (eds) The Root Canal Biofilm. Springer Series on Biofilms, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47415-0_2

Download citation

Publish with us

Policies and ethics