Skip to main content

Lanthanide Single-Ion Molecular Magnets

  • Chapter
  • First Online:
Lanthanide Single Molecule Magnets

Abstract

The most important lanthanide single-ion molecular magnets (SIMMs) reported to date including the lanthanide phthalocyanine, lanthanide β-diketone, and organometallic lanthanide systems are systematically investigated in this chapter. In particular, some important relationships between the structural features and magnetic performances are discussed in detail based on the theoretical results, presenting a guideline for the effective design of lanthanide SIMMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller JS (2011) Magnetically ordered molecule-based materials. Chem Soc Rev 40(6):3266–3296. doi:10.1039/c0cs00166j

    Article  Google Scholar 

  2. Miller JS, Epstein AJ (2000) Molecule-based magnets-an overview. MRS Bull 25(11):21–30

    Article  Google Scholar 

  3. Sun H-L, Wang Z-M, Gao S (2010) Strategies towards single-chain magnets. Coord Chem Rev 254(9–10):1081–1100. doi:10.1016/j.ccr.2010.02.010

    Article  Google Scholar 

  4. Miyasaka H, Julve M, Yamashita M et al (2009) Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets. Inorg Chem 48(8):3420–3437. doi:10.1021/ic802050j

    Article  Google Scholar 

  5. Christou G, Gatteschi D, Hendrickson DN et al (2000) Single-molecule magnets. MRS Bull 25(11):66–71. doi:10.1557/mrs2000.204

    Article  Google Scholar 

  6. Bernot K, Luzon J, Bogani L et al (2009) Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation. J Am Chem Soc 131(15):5573–5579. doi:10.1021/ja8100038

    Article  Google Scholar 

  7. Rinehart JD, Fang M, Evans WJ et al (2011) Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat Chem 3(7):538–542. doi:10.1038/nchem.1063

    Article  Google Scholar 

  8. Jiang SD, Wang BW, Su G et al (2010) A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed 7448–7451. doi:10.1002/anie.201004027

  9. Jiang S-D, Wang B-W, Sun H-L et al (2011) An organometallic single-ion magnet. J Am Chem Soc 133(13):4730–4733. doi:10.1021/ja200198v

    Article  Google Scholar 

  10. Feltham HLC, Brooker S (2014) Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord Chem Rev 276:1–33. doi:10.1016/j.ccr.2014.05.011

    Article  Google Scholar 

  11. Ishikawa N, Sugita M, Ishikawa T et al (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125(29):8694–8695. doi:10.1021/ja029629n

    Article  Google Scholar 

  12. AlDamen MA, Clemente-Juan JM, Coronado E et al (2008) Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc 130(28):8874–8875. doi:10.1021/ja801659m

    Article  Google Scholar 

  13. Chen G-J, Guo Y-N, Tian J-L et al (2012) Enhancing anisotropy barriers of dysprosium(III) single-ion magnets. Chem Eur J 18(9):2484–2487. doi:10.1002/chem.201103816

    Article  Google Scholar 

  14. Jeletic M, Lin P-H, Le Roy JJ et al (2011) An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism. J Am Chem Soc 133(48):19286–19289. doi:10.1021/ja207891y

    Article  Google Scholar 

  15. Freedman DE, Harman WH, Harris TD et al (2010) Slow magnetic relaxation in a high-spin iron(II) complex. J Am Chem Soc 132(4):1224–1225. doi:10.1021/ja909560d

    Article  Google Scholar 

  16. Zadrozny JM, Long JR (2011) Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J Am Chem Soc 133(51):20732–20734. doi:10.1021/ja2100142

    Article  Google Scholar 

  17. Zadrozny JM, Xiao DJ, Atanasov M et al (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5(7):577–581. doi:10.1038/nchem.1630

    Article  Google Scholar 

  18. Rinehart JD, Long JR (2009) Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J Am Chem Soc 131(35):12558–12559. doi:10.1021/ja906012u

    Article  Google Scholar 

  19. Magnani N, Apostolidis C, Morgenstern A et al (2011) Magnetic memory effect in a transuranic mononuclear complex. Angew Chem Int Ed 50(7):1696–1698. doi:10.1002/anie.201006619

    Article  Google Scholar 

  20. Ungur L, Le Roy JJ, Korobkov I et al (2014) Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. Angew Chem Int Ed 53(17):4413–4417. doi:10.1002/anie.201310451

    Article  Google Scholar 

  21. Zhang P, Zhang L, Wang C et al (2014) Equatorially coordinated lanthanide single ion magnets. J Am Chem Soc 136(12):4484–4487. doi:10.1021/ja500793x

    Article  Google Scholar 

  22. Watanabe A, Yamashita A, Nakano M et al (2011) Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chem Eur J 17(27):7428–7432. doi:10.1002/chem.201003538

    Article  Google Scholar 

  23. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2(11):2078–2085. doi:10.1039/C1SC00513H

    Article  Google Scholar 

  24. Cucinotta G, Perfetti M, Luzon J et al (2012) Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. Angew Chem Int Ed 51(7):1606–1610. doi:10.1002/anie.201107453

    Article  Google Scholar 

  25. Boulon M-E, Cucinotta G, Luzon J et al (2013) Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew Chem Int Ed 52(1):350–354. doi:10.1002/anie.201205938

    Article  Google Scholar 

  26. Meihaus KR, Minasian SG, Lukens WW et al (2014) Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes. J Am Chem Soc 136(16):6056–6068. doi:10.1021/ja501569t

    Article  Google Scholar 

  27. Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102(6):2369–2388. doi:10.1021/cr010303r

    Article  Google Scholar 

  28. Skomski R (2008) Simple models of magnetism. Oxford University Press, New York

    Book  Google Scholar 

  29. Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11–12):1728–1763. doi:10.1016/j.ccr.2013.01.012

    Article  Google Scholar 

  30. Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13(45):20086–20090. doi:10.1039/C1CP22689D

    Article  Google Scholar 

  31. Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44(19):2931–2935. doi:10.1002/anie.200462638

    Article  Google Scholar 

  32. da Cunha TT, Jung J, Boulon M-E et al (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a DyIII-based single ion magnet. J Am Chem Soc 135(44):16332–16335. doi:10.1021/ja4089956

    Article  Google Scholar 

  33. Meihaus KR, Long JR (2013) Magnetic blocking at 10 K and a dipolar-mediated avalanche in salts of the bis(η8-cyclooctatetraenide) complex [Er(COT)2]. J Am Chem Soc 135(47):17952–17957. doi:10.1021/ja4094814

    Article  Google Scholar 

  34. Guo Y-N, Ungur L, Granroth GE et al (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471. doi:10.1038/srep05471

    ADS  Google Scholar 

  35. Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40(6):3092–3104. doi:10.1039/C0CS00185F

    Article  Google Scholar 

  36. Liu J-L, Chen Y-C, Zheng Y-Z et al (2013) Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem Sci 4(8):3310–3316. doi:10.1039/c3sc50843a

    Article  Google Scholar 

  37. Baldoví JJ, Cardona-Serra S, Clemente-Juan JM et al (2012) Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. Inorg Chem 51(22):12565–12574. doi:10.1021/ic302068c

    Article  Google Scholar 

  38. Görller-Walrand C, Binnemans K (1996) Rationalization of crystal-field parametrization Chap. 155. In: Gschneidner KA Jr, LeRoy E (eds) Handbook on the physics and chemistry of rare earths, vol 23. Elsevier, Amsterdam, pp 121–283. doi:10.1016/S0168-1273(96)23006-5

  39. Dolbecq A, Dumas E, Mayer CR et al (2010) Hybrid organic−inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110(10):6009–6048. doi:10.1021/cr1000578

    Article  Google Scholar 

  40. Huang C (2010) Rare earth coordination chemistry: fundamentals and applications. John Wiley & Sons (Asia) Pte Ltd. Singapore

    Google Scholar 

  41. Ishikawa N (2010) Phthalocyanine-based magnets. In: Jiang J (ed) Functional phthalocyanine molecular materials, vol 135. Structure and bonding. Springer, Berlin, pp 211–228. doi:10.1007/978-3-642-04752-7_7

  42. Takamatsu S, Ishikawa T, Koshihara S et al (2007) Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg Chem 46(18):7250–7252. doi:10.1021/ic700954t

    Article  Google Scholar 

  43. De Cian A, Moussavi M, Fischer J et al (1985) Synthesis, structure, and spectroscopic and magnetic properties of lutetium(III) phthalocyanine derivatives: LuPc2·CH2Cl2 and [LuPc(OAc)(H2O)2]·H2O·2CH3OH. Inorg Chem 24(20):3162–3167. doi:10.1021/ic00214a016

    Article  Google Scholar 

  44. Ishikawa N, Sugita M, Okubo T et al (2003) Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg Chem 42(7):2440–2446. doi:10.1021/ic026295u

    Article  Google Scholar 

  45. Thomas L, Lionti F, Ballou R et al (1996) Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383(6596):145–147. doi:10.1038/383145a0

    Article  ADS  Google Scholar 

  46. Ishikawa N, Sugita M, Wernsdorfer W (2005) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127(11):3650–3651. doi:10.1021/ja0428661

    Article  Google Scholar 

  47. Ishikawa N, Ohno O, Kaizu Y (1993) Electronic states of bis(phthalocyaninato)lutetium radical and its related compounds: the application of localized orbital basis set to open-shell phthalocyanine dimers. J Phys Chem 97(5):1004–1010. doi:10.1021/j100107a006

    Article  Google Scholar 

  48. Takamatsu S, Ishikawa N (2007) A theoretical study of a drastic structural change of bis(phthalocyaninato)lanthanide by ligand oxidation: towards control of ligand field strength and magnetism of single-lanthanide-ionic single molecule magnet. Polyhedron 26(9–11):1859–1862. doi:10.1016/j.poly.2006.09.020

    Article  Google Scholar 

  49. Ishikawa N, Sugita M, Tanaka N et al (2004) Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg Chem 43(18):5498–5500. doi:10.1021/ic049348b

    Article  Google Scholar 

  50. Ishikawa N, Mizuno Y, Takamatsu S et al (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg Chem 47(22):10217–10219. doi:10.1021/ic8014892

    Article  Google Scholar 

  51. Gonidec M, Davies ES, McMaster J et al (2010) Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy. J Am Chem Soc 132(6):1756–1757. doi:10.1021/ja9095895

    Article  Google Scholar 

  52. McInnes EJL, Pidcock E, Oganesyan VS et al (2002) Optical detection of spin polarization in single-molecule magnets [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 124(31):9219–9228. doi:10.1021/ja020456b

    Article  Google Scholar 

  53. Gonidec M, Krivokapic I, Vidal-Gancedo J et al (2013) Highly reduced double-decker single-molecule magnets exhibiting slow magnetic relaxation. Inorg Chem 52(8):4464–4471. doi:10.1021/ic3027418

    Article  Google Scholar 

  54. Ganivet CR, Ballesteros B, de la Torre G et al (2013) Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem Eur J 19(4):1457–1465. doi:10.1002/chem.201202600

    Article  Google Scholar 

  55. Gonidec M, Luis F, Vílchez À et al (2010) A liquid-crystalline single-molecule magnet with variable magnetic properties. Angew Chem Int Ed 49(9):1623–1626. doi:10.1002/anie.200905007

    Article  Google Scholar 

  56. Gonidec M, Amabilino DB, Veciana J (2012) Novel double-decker phthalocyaninato terbium(III) single molecule magnets with stabilised redox states. Dalton Trans 41(44):13632–13639. doi:10.1039/c2dt31171b

    Article  Google Scholar 

  57. Katoh K, Isshiki H, Komeda T et al (2011) Multiple-decker phthalocyaninato Tb(III) single-molecule magnets and Y(III) complexes for next generation devices. Coord Chem Rev 255(17–18):2124–2148. doi:10.1016/j.ccr.2011.02.024

    Article  Google Scholar 

  58. Katoh K, Umetsu K, Breedlove Brian K et al (2012) Magnetic relaxation behavior of a spatially closed dysprosium(III) phthalocyaninato double-decker complex. Sci China Chem 55(6):918–925. doi:10.1007/s11426-012-4615-9

    Article  Google Scholar 

  59. Waters M, Moro F, Krivokapic I et al (2012) Synthesis, characterisation and magnetic study of a cyano-substituted dysprosium double decker single-molecule magnet. Dalton Trans 41(4):1128–1130. doi:10.1039/c1dt11880c

    Article  Google Scholar 

  60. Tanaka D, Inose T, Tanaka H et al (2012) Proton-induced switching of the single molecule magnetic properties of a porphyrin based TbIII double-decker complex. Chem Commun 48(63):7796–7798. doi:10.1039/c2cc00086e

    Article  Google Scholar 

  61. Wang H, Wang K, Tao J et al (2012) Twist angle perturbation on mixed (phthalocyaninato)(porphyrinato) dysprosium(III) double-decker SMMs. Chem Commun 48(24):2973–2975. doi:10.1039/c2cc16543k

    Article  Google Scholar 

  62. Williams UJ, Mahoney BD, DeGregorio PT et al (2012) A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets. Chem Commun 48(45):5593–5595. doi:10.1039/c2cc31227a

    Article  Google Scholar 

  63. AlDamen MA, Cardona-Serra S, Clemente-Juan JM et al (2009) Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg Chem 48(8):3467–3479. doi:10.1021/ic801630z

    Article  Google Scholar 

  64. Cardona-Serra S, Clemente-Juan JM, Coronado E et al (2012) Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12– (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J Am Chem Soc 134(36):14982–14990. doi:10.1021/ja305163t

    Article  Google Scholar 

  65. Bogani L, Sangregorio C, Sessoli R et al (2005) Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosium-nitronyl nitroxide compound. Angew Chem Int Ed 44(36):5817–5821. doi:10.1002/anie.200500464

    Article  Google Scholar 

  66. Aravena D, Ruiz E (2013) Shedding light on the single-molecule magnet behavior of mononuclear DyIII complexes. Inorg Chem 52(23):13770–13778. doi:10.1021/ic402367c

    Article  Google Scholar 

  67. Chilton NF, Collison D, McInnes EJL et al (2013) An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat Commun 4:2551. doi:10.1038/ncomms3551

    Article  ADS  Google Scholar 

  68. Bi Y, Guo Y-N, Zhao L et al (2011) Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chem Eur J 17(44):12476–12481. doi:10.1002/chem.201101838

    Article  Google Scholar 

  69. Wang Y-L, Gu B, Ma Y et al (2014) A new D2d-symmetry DyIII mononuclear single-molecule magnet containing a monodentate N-heterocyclic donor ligand. CrystEngComm 16(11):2283–2289. doi:10.1039/c3ce42212g

    Article  Google Scholar 

  70. Cao D-K, Gu Y-W, Feng J-Q et al (2013) Mononuclear lanthanide complexes incorporating an anthracene group: structural modification, slow magnetic relaxation and multicomponent fluorescence emissions in Dy compounds. Dalton Trans 42(32):11436–11444. doi:10.1039/c3dt51176f

    Article  Google Scholar 

  71. Wang Y-L, Ma Y, Yang X et al (2013) Syntheses, structures, and magnetic and luminescence properties of a new DyIII-based single-ion magnet. Inorg Chem 52(13):7380–7386. doi:10.1021/ic400006n

    Article  Google Scholar 

  72. Silva MR, Martin-Ramos P, Coutinho JT et al (2014) Effect of the capping ligand on luminescent erbium(III) β-diketonate single-ion magnets. Dalton Trans 43(18):6752–6761. doi:10.1039/c4dt00168k

    Article  Google Scholar 

  73. Li X-L, Chen C-L, Gao Y-L et al (2012) Modulation of homochiral DyIII complexes: single-molecule magnets with ferroelectric properties. Chem Eur J 18(46):14632–14637. doi:10.1002/chem.201201190

    Article  MathSciNet  Google Scholar 

  74. Li D-P, Zhang X-P, Wang T-W et al (2011) Distinct magnetic dynamic behavior for two polymorphs of the same Dy(III) complex. Chem Commun 47(24):6867–6869. doi:10.1039/C1CC11659B

    Article  Google Scholar 

  75. Li D-P, Wang T-W, Li C-H et al (2010) Single-ion magnets based on mononuclear lanthanide complexes with chiral schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem Commun 46(17):2929–2931. doi:10.1039/B924547B

    Article  Google Scholar 

  76. Wang Y, Li X-L, Wang T-W et al (2009) Slow relaxation processes and single-ion magnetic behaviors in dysprosium-containing complexes. Inorg Chem 49(3):969–976. doi:10.1021/ic901720a

    Article  Google Scholar 

  77. Liu C-M, Zhang D-Q, Zhu D-B (2013) Field-induced single-ion magnets based on enantiopure chiral β-diketonate ligands. Inorg Chem 52(15):8933–8940. doi:10.1021/ic4011218

    Article  MathSciNet  Google Scholar 

  78. Coronado E, Galan-Mascaros JR, Gomez-Garcia CJ et al (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408(6811):447–449. doi:10.1038/35044035

    Article  ADS  Google Scholar 

  79. Kubo K, Shiga T, Yamamoto T et al (2011) Electronic state of a conducting single molecule magnet based on Mn-salen type and Ni-dithiolene complexes. Inorg Chem 50(19):9337–9344. doi:10.1021/ic200863c

    Article  Google Scholar 

  80. Pointillart F, Le Gal Y, Golhen S et al (2011) Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chem Eur J 17(37):10397–10404. doi:10.1002/chem.201100869

    Article  Google Scholar 

  81. Di Piazza E, Norel L, Costuas K et al (2011) d-f Heterobimetallic association between ytterbium and ruthenium carbon-rich complexes: redox commutation of near-IR luminescence. J Am Chem Soc 133(16):6174–6176. doi:10.1021/ja2023515

    Article  Google Scholar 

  82. Norel L, Feng M, Bernot K et al (2014) Redox modulation of magnetic slow relaxation in a 4f-based single-molecule magnet with a 4d carbon-rich ligand. Inorg Chem 53(5):2361–2363. doi:10.1021/ic403081y

    Article  Google Scholar 

  83. Norel L, Bernot K, Feng M et al (2012) A carbon-rich ruthenium decorated dysprosium single molecule magnet. Chem Commun 48(33):3948–3950. doi:10.1039/c2cc30604b

    Article  Google Scholar 

  84. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148. doi:10.1021/cr400018q

    Article  Google Scholar 

  85. Zhou N, Ma Y, Wang C et al (2009) A monometallic tri-spin single-molecule magnet based on rare earth radicals. Dalton Trans 40:8489–8492. doi:10.1039/b908639k

    Article  Google Scholar 

  86. Wang X-L, Li L-C, Liao D-Z (2010) Slow magnetic relaxation in lanthanide complexes with chelating nitronyl nitroxide radical. Inorg Chem 49(11):4735–4737. doi:10.1021/ic100008g

    Article  Google Scholar 

  87. Bernot K, Pointillart F, Rosa P et al (2010) Single molecule magnet behaviour in robust dysprosium-biradical complexes. Chem Commun 46(35):6458–6460. doi:10.1039/c0cc00966k

    Article  Google Scholar 

  88. Wang X, Bao X, Xu P et al (2011) From discrete molecule to one-dimension chain: two new nitronyl nitroxide–lanthanide complexes exhibiting slow magnetic relaxation. Eur J Inorg Chem 2011(24):3586–3591. doi:10.1002/ejic.201100296

  89. Mei X-L, Ma Y, Li L-C et al (2012) Ligand field-tuned single-molecule magnet behaviour of 2p-4f complexes. Dalton Trans 41:505–511. doi:10.1039/C1DT11795E

    Article  Google Scholar 

  90. Wang X-L, Tian H-X, Ma Y et al (2011) Slow magnetic relaxation in lanthanide complexes with chelating imino nitroxide radicals. Inorg Chem Commun 14(11):1728–1731. doi:10.1016/j.inoche.2011.07.016

    Article  Google Scholar 

  91. Hu P, Zhu M, Mei X et al (2012) Single-molecule magnets based on rare earth complexes with chelating benzimidazole-substituted nitronyl nitroxide radicals. Dalton Trans 41(48):14651–14656. doi:10.1039/c2dt31806g

    Article  Google Scholar 

  92. Tian L, Sun Y-Q, Na B et al (2013) A family of homologous heterospin complexes based on lanthanides and biradical ligands. Eur J Inorg Chem 2013(24):4329–4335. doi:10.1002/ejic.201300524

  93. Coronado E, Giménez-Saiz C, Recuenco A et al (2011) Single-molecule magnetic behavior in a neutral terbium(III) complex of a picolinate-based nitronyl nitroxide free radical. Inorg Chem 50(16):7370–7372. doi:10.1021/ic2010425

    Article  Google Scholar 

  94. Fatila EM, Rouzières M, Jennings MC et al (2013) Fine-tuning the single-molecule magnet properties of a [Dy(III)-radical]2 pair. J Am Chem Soc 135(26):9596–9599. doi:10.1021/ja403794d

    Article  Google Scholar 

  95. Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33(5):1084–1099. doi:10.1021/om401107f

    Google Scholar 

  96. Layfield RA, McDouall JJW, Sulway SA et al (2010) Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet. Chem Eur J 16(15):4442–4446. doi:10.1002/chem.201000158

    Article  Google Scholar 

  97. Huang W, Dulong F, Wu T et al (2013) A six-carbon 10π-electron aromatic system supported by group 3 metals. Nat Commun 4:1448. doi:10.1038/ncomms2473

    Article  ADS  Google Scholar 

  98. Jiang S-D, Liu S-S, Zhou L-N et al (2012) Series of lanthanide organometallic single-ion magnets. Inorg Chem 51(5):3079–3087. doi:10.1021/ic202511n

    Article  Google Scholar 

  99. Boulon M-E, Cucinotta G, Liu S-S et al (2013) Angular-resolved magnetometry beyond triclinic crystals: out-of-equilibrium studies of Cp*ErCOT single-molecule magnet. Chem Eur J 19(41):13726–13731. doi:10.1002/chem.201302600

    Article  Google Scholar 

  100. Le Roy JJ, Korobkov I, Murugesu M (2014) A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium(III) ion. Chem Commun 50(13):1602–1604. doi:10.1039/c3cc48557a

    Article  Google Scholar 

  101. Demir S, Zadrozny JM, Long JR (2014) Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2Ln(BPh4)] (Cp* = pentamethylcyclopentadienyl; Ln = Tb, Dy). Chem Eur J 20(31):9524–9529. doi:10.1002/chem.201403751

    Article  Google Scholar 

  102. Liu S-S, Ziller JW, Zhang Y-Q et al (2014) A half-sandwich organometallic single-ion magnet with hexamethylbenzene coordinated to the Dy(III) ion. Chem Commun 50(77):11418–11420. doi:10.1039/c4cc04262j

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, J., Zhang, P. (2015). Lanthanide Single-Ion Molecular Magnets. In: Lanthanide Single Molecule Magnets. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46999-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46999-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46998-9

  • Online ISBN: 978-3-662-46999-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics