Skip to main content

Fish–Robot Interactions: Robot Fish in Animal Behavioral Studies

  • Chapter
  • First Online:
Robot Fish

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In this chapter, we focus on the use of robotic fish in animal behavior studies. Specifically, we describe the design and control of a low-cost robot along with accompanying enabling technologies for use in animal experiments. The robotic fish appearance and movement are inspired by the zebrafish animal model. The robot is capable of autonomous underwater operation. Two behavioral studies demonstrate the use of the robotic fish to test hypotheses on zebrafish social behavior. In the first study exploring zebrafish preference in a binary choice test, we find that the robot is able to elicit attraction in both individuals and small shoals when the other alternative is an empty compartment. At the same time, between conspecifics and the robot, zebrafish prefer the former, highlighting design choices that need further improvement. The second study describes the interaction between the robot and shoals of zebrafish in a free-swimming environment. The robot swims autonomously along predefined circular trajectories at three different speeds, corresponding to increasing tail-beat frequency. The robot is found to modulate zebrafish shoal cohesion, confirming expectations from the preference study result. In summary, the robotic fish platform described in this chapter provides a viable and fully controllable three-dimensional interactive tool for animal behavior experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experimental procedure was approved by Polytechnic Institute of New York University (now New York University Polytechnic School of Engineering) Animal Welfare Oversight Committee AWOC-2011-101.

  2. 2.

    Experiments followed protocol numbers AWOC-2012-101 and AWOC-2013-103 that were approved by the Animal Welfare Oversight Committee of the Polytechnic Institute of New York University (now New York University Polytechnic School of Engineering).

References

  1. Boissy A (1995) Fear and fearfulness in animals. Q Rev Biol 70(2):165–191

    Article  Google Scholar 

  2. Krause J, Winfield AFT, Deneubourg J (2011) Interactive robots in experimental biology. Trends Ecol Evol 26(7):369–375

    Article  Google Scholar 

  3. Rossi C, Coral W, Barrientos A (2012) Robotic fish to lead the school. In: Palstra AP, Planas JV (eds) Swimming physiology of fish. Springer, New York, pp 407–421

    Google Scholar 

  4. Ward AJW, Sumpter DJT, Couzin ID, Hart PJB, Krause J (2008) Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci USA 105(19):6948–6953

    Article  Google Scholar 

  5. Partan SR, Larco CP, Owens MJ (2009) Wild tree squirrels respond with multisensory enhancement to conspecific robot alarm behaviour. Anim Behav 77(5):1127–1135

    Article  Google Scholar 

  6. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tâche F, Saïd I, Durier V, Canonge S, Amé JM, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg JL (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853):1155–1158

    Google Scholar 

  7. Spinello C, Macrì S, Porfiri M (2013) Acute ethanol administration affects zebrafish preference for a biologically-inspired robot. Alcohol 47(5):391–398

    Article  Google Scholar 

  8. Todd DJ (1993) Mobile robots-the lessons from nature. Robot Biol Syst Towards New Bionics 102(1):193–206

    Article  Google Scholar 

  9. Webb B (2002) Can robots make good models of biological behaviour? Behav Brain Sci 24(06):1033–1050

    Google Scholar 

  10. Tokekar P, Branson E, Vander Hook J, Isler V (2013) Tracking aquatic invaders: autonomous robots for monitoring invasive fish. Robot Autom Mag 20(3):33–41

    Google Scholar 

  11. Faria JJ, Dyer JRG, Clément RO, Couzin ID, Holt N, Ward AJW, Waters D, Krause J (2010) A novel method for investigating the collective behaviour of fish: introducing ‘Robofish’. Behav Ecol Sociobiol 64(8):1–8

    Article  Google Scholar 

  12. Marras S, Porfiri M (2012) Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J R Soc Interface 9(73):1856–1868

    Article  Google Scholar 

  13. Cianca V, Bartolini T, Porfiri M, Macrì S (2013) A robotics-based behavioral paradigm to measure anxiety-related responses in zebrafish. PLoS ONE 8(7):e69661

    Article  Google Scholar 

  14. Kopman V, Laut J, Polverino G, Porfiri M (2013) Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. J R Soc Interface 10(78):20120540

    Article  Google Scholar 

  15. Butail S, Bartolini T, Porfiri M (2013) Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS ONE 8(10):e76123

    Article  Google Scholar 

  16. Miklósi A, Andrew RJ (2006) The zebrafish as a model for behavioral studies. Zebrafish 3(2):227–234

    Article  Google Scholar 

  17. Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 207(2):223–231

    Article  Google Scholar 

  18. Kalueff AV, Stewart AM (eds) (2012) Zebrafish protocols for neurobehavioral research. Humana Press, New York

    Google Scholar 

  19. Ladu F, Bartolini T, Panitz S, Chiarotti F, Butail S, Macrì S & Porfiri M (2015) Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish, Zebrafish. doi: 10.1089/zeb.2014.1041

  20. Polverino G, Abaid N, Kopman V, Macrì S, Porfiri M (2012) Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals. Bioinspir Biomim 7(3):036019

    Article  Google Scholar 

  21. Abaid N, Bartolini T, Macrì S, Porfiri M (2012) Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav Brain Res 233(2):545–553

    Article  Google Scholar 

  22. Polverino G, Porfiri M (2013) Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio. Behav Brain Res 250(1):133–138

    Article  Google Scholar 

  23. Polverino G, Porfiri M (2013) Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis). Bioinspir Biomim 8(4):044001

    Article  Google Scholar 

  24. Polverino G, Phamduy P, Porfiri M (2013) Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior. PLoS ONE 8(10):e77589

    Article  Google Scholar 

  25. Abaid N, Marras S, Fitzgibbons C, Porfiri M (2013) Modulation of risk-taking behaviour in golden shiners (Notemigonus crysoleucas) using robotic fish. Behav Process 100:9–12

    Article  Google Scholar 

  26. Butail S, Ladu F, Spinello D, Porfiri M (2014) Information flow in animal-robot interactions. Entropy (Spec Iss Inf Dyn Syst Complex Syst) 16(3):1315–1330

    Google Scholar 

  27. Butail S, Polverino G, Phamduy P, Del Sette F, Porfiri M (2014) Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment. Behav Brain Res 275:269–280

    Google Scholar 

  28. Phamduy P, Polverino G, Fuller RC, Porfiri M (2014) Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs. Bioinspir Biomim 9(3):036021

    Article  Google Scholar 

  29. Aureli M, Porfiri M (2010) Coordination of self-propelled particles through external leadership. Europhys Lett 92(4):40004

    Article  Google Scholar 

  30. Aureli M, Fiorilli F, Porfiri M (2012) Portraits of self-organization in fish schools interacting with robots. Phys D Nonlinear Phenom 241(9):908–920

    Article  MATH  Google Scholar 

  31. Kopman V, Laut J, Acquaviva F, Rizzo A, Porfiri M (2014) Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J Ocean Eng PP(99):1–13

    Google Scholar 

  32. Strefling PC, Helium AM, Mukherjee R (2012) Modeling, simulation, and performance of a synergistically propelled ichthyoid. IEEE/ASME Trans Mechatron 17(1):36–45

    Article  Google Scholar 

  33. Low KH, Chong CW (2010) Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinspir Biomim 5(4):046002

    Article  Google Scholar 

  34. Barrett DS, Triantafyllou MS, Yue DKP, Grosenbaugh MA, Wolfgang MJ (1999) Drag reduction in fish-like locomotion. J Fluid Mech 392:183–212

    Google Scholar 

  35. Shao J, Wang L, Yu J (2008) Development of an artificial fish-like robot and its application in cooperative transportation. Control Eng Pract 16(5):569–584

    Article  Google Scholar 

  36. Malec M, Morawski M, Zajac J (2010) Fish-like swimming prototype of mobile underwater robot. J Autom Mobile Robot Intell Syst 4:25–30

    Google Scholar 

  37. Liu J, Hu H (2010) Biological inspiration: from carangiform fish to multi-joint robotic fish. J Bionic Eng 7(1):35–48

    Article  Google Scholar 

  38. Morgansen KA, Triplett BI, Klein DJ (2007) Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans Robot 23(6):1184–1199

    Article  Google Scholar 

  39. Guo J (2006) A waypoint-tracking controller for a biomimetic autonomous underwater vehicle. Ocean Eng 33(17):2369–2380

    Article  Google Scholar 

  40. Alvarado PV y, Youcef-Toumi K (2006) Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J Dyn Syst Meas Control 128(1):3–13

    Google Scholar 

  41. Kopman V, Porfiri M (2012) Design, modeling, and characterization of a miniature robotic-fish for research and education in biomimetics and bioinspiration. IEEE/ASME Trans Mechatron 18(2):471–483

    Article  Google Scholar 

  42. Abaid N, Kopman V, Porfiri M (2013) An attraction toward engineering careers: the story of a Brooklyn outreach program on biomimetics, underwater robotics, and marine science for K-12 students. IEEE Robot Autom Mag 20(2):31–39

    Article  Google Scholar 

  43. Laut J, Bartolini T, Porfiri M (2014) Bioinspiring an interest in STEM. IEEE Trans Educ 58(1):48–55

    Google Scholar 

  44. Abaid N, Bernhardt J, Frank JA, Kapila V, Kimani D, Porfiri M (2013) Controlling a robotic fish with a smart phone. Mechatronics 23(5):491–496

    Article  Google Scholar 

  45. Abaid N, Yuvienco C, Kapil V, Iskander M (2011) Mechatronics mania at the inaugural USA science and engineering festival. IEEE Control Syst Mag 31(5):105–124

    Article  MathSciNet  Google Scholar 

  46. Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38(3):456–469

    Article  Google Scholar 

  47. Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG (2014) idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods 11:743–748

    Google Scholar 

  48. Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14:186–204

    Google Scholar 

  49. Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG, Noldus LP, et al. (2014) Automated image-based tracking and its application in ecology. Trends Ecol Evol 29:417–428

    Google Scholar 

  50. Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2:83–97

    Article  Google Scholar 

  51. Ladu F, Butail S, Macrì S, Porfiri M (2014) Sociality modulates the effects of ethanol in zebrafish. Alcohol Clin Exp Res 38(7):2096–2104

    Article  Google Scholar 

  52. Carson C, Belongie S (2002) Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038

    Article  Google Scholar 

  53. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  Google Scholar 

  54. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3(9):717–724

    Article  Google Scholar 

  55. Mathur P, Guo S (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40(1):66–72

    Article  Google Scholar 

  56. Gerlai R (2012) Using zebrafish to unravel the genetics of complex brain disorders. In: Current topics in behavioral neurosciences, behavioral neurogenetic, vol 12. Springer, Berlin, pp 3–24

    Google Scholar 

  57. Goldsmith JR, Jobin C (2012) Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol 2012:817341

    Article  Google Scholar 

  58. Kalueff AV, Steward AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75

    Google Scholar 

  59. Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV (2014) Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuro-Psychopharmacol Biol Psychiatry 50:27–36

    Article  Google Scholar 

  60. Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J Fish Biol 10(2):121–173

    Article  Google Scholar 

  61. Buske C, Gerlai R (2011) Shoaling develops with age in Zebrafish (Danio rerio). Prog. Neuro-Psychopharmacol Biol Psychiatry 35(6):1409–1415

    Article  Google Scholar 

  62. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191(1):77–87

    Article  Google Scholar 

  63. Pritchard VL, Lawrence J, Butlin RK, Krause J (2001) Shoal choice in zebrafish, Danio rerio: the influence of shoal size and activity. Anim Behav 62(6):1085–1088

    Article  Google Scholar 

  64. Bass SLS, Gerlai R (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186(1):107–117

    Article  Google Scholar 

  65. Snekser JL, Ruhl N (2010) The influence of sex and phenotype on shoaling decisions in zebrafish. Int J Comp Psychol 23(1):70–81

    Google Scholar 

  66. Cahill G (2002) Clock mechanisms in zebrafish. Cell Tissue Res 309(1):27–34

    Article  Google Scholar 

  67. McDonald JH (2009) Handbook of biological statistics. Sparky House Publishing, Baltimore

    Google Scholar 

  68. Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J, Grimes C, Chung A, Rosenberg M, Gaikwad S, Denmark A, Jackson A, Kadri F, Chung KM, Stewart A, Gilder T, Beeson E, Zapolsky I, Wu N, Cachat J, Kalueff AV (2010) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208(2):450–457

    Article  Google Scholar 

  69. Guo S, Fukuda T, Asaka K (2003) A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron 8(1):136–141

    Article  Google Scholar 

  70. Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mechatron 15(4):603–614

    Article  Google Scholar 

  71. Chen Z, Shatara S, Tan X (2010) Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans Mechatron 15(3):448–459

    Article  Google Scholar 

  72. Chen Z, Um TI, Bart-Smith H (2011) A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens Actuators A Phys 168(1):131–139

    Article  Google Scholar 

  73. Cen L, Erturk A (2013) Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir Biomim 8(1):016006

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation under grants CMMI- 0745753, DGE-0741714, CMMI-1129820, and CMMI-1433670. The authors would also like to thank Giovanni Polverino, Vladislav Kopman, and Tiziana Bartolini who have contributed to the research efforts summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Butail, S., Abaid, N., Macrì, S., Porfiri, M. (2015). Fish–Robot Interactions: Robot Fish in Animal Behavioral Studies. In: Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P. (eds) Robot Fish. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46870-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46870-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46869-2

  • Online ISBN: 978-3-662-46870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics