Skip to main content

Interest Rate Derivatives: One Factor Spot Rate Models

  • Chapter
Derivative Security Pricing

Abstract

In this chapter we survey models of interest rate derivatives which take the instantaneous spot interest rate as the underlying factor. The continuous hedging argument is extended so as to model the term structure of interest rates and other interest rate derivative securities. This basic approach is due to Vasicek (J Financ Econ 5:177–188, 1977) and hence we shall often refer to it as the Vasicek approach. By specifying different functional forms for the drift, the diffusion and the market price of risk, we develop three well known spot rate models, namely the Vasicek model, the Hull–White model and the Cox–Ingersoll–Ross model. Then we present a general framework for pricing bond options and we apply this framework to obtain closed form solutions for bond options under the specifications of the Hull–White and the Cox–Ingersoll–Ross model. Finally we discuss the calibration of the Hull–White model to the currently observed yield curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that by the rules of stochastic calculus

    $$\displaystyle{\frac{\mathit{dZ}} {Z} = \frac{\mathit{dP}} {P} -\frac{\mathit{dA}} {A} -\frac{\mathit{dP}} {P} \cdot \frac{\mathit{dA}} {A} + \left (\frac{\mathit{dA}} {A} \right )^{2}.}$$
  2. 2.

    Make the identifications \(x \rightarrow r,v(t,r) \rightarrow P(r,t,T),\lambda = -1,f[s,x(s)] \rightarrow r(s)\).

  3. 3.

    One motivation for the functional form Eq. (23.25) is that when r is constant, we have \(P(t,T) = e^{-r(T-t)}\), and (23.25) is an obvious generalisation of this relation.

  4. 4.

    We employ the notation \(a_{t} = \frac{\partial } {\partial t}a(t,T)\), \(b_{t} = \frac{\partial } {\partial t}b(t,T)\).

  5. 5.

    Equation (23.29) can be re-arranged into

    $$\displaystyle{ \frac{d} {\mathit{dt}}\left (b(t,T)e^{-\kappa t}\right ) = -e^{-\kappa t}}$$

    and integrating t to T we obtain

    $$\displaystyle{b(T,T)e^{-\kappa T} - b(t,T)e^{-\kappa t} = -\int _{t}^{T}e^{-\kappa s}\mathit{ds} = -\frac{1} {\kappa } (e^{-\kappa t} - e^{-\kappa T}).}$$

    Use of the boundary condition b(T, T) = 0 and some re-arrangement yields (23.31).

  6. 6.

    Note that

    $$\displaystyle{\int _{t}^{T}b(s,T)\mathit{ds} =\int _{ t}^{T}\frac{(1 - e^{-\kappa (T-s)})} {\kappa } \mathit{ds} =\int _{ 0}^{T-t}\frac{(1 - e^{-\kappa u})} {\kappa } \mathit{du} = \frac{(T - t)} {\kappa } + \frac{1} {\kappa ^{2}}(e^{-\kappa (T-t)} - 1)}$$

    and

    $$\displaystyle\begin{array}{rcl} \int _{t}^{T}b^{2}(s,T)\mathit{ds}& =& \int _{ 0}^{T-t}\frac{(1 - e^{-\kappa u})^{2}} {\kappa ^{2}} \mathit{du} {}\\ & =& \frac{1} {\kappa ^{2}}\left [(T - t) + \frac{2} {\kappa } (e^{-\kappa (T-t)} - 1) -\frac{1} {2\kappa }(e^{-2\kappa (T-t)} - 1)\right ] {}\\ & =& \frac{(T - t)} {\kappa ^{2}} - \frac{1} {2\kappa ^{3}}\left \{(e^{-\kappa (T-t)} - 1)^{2} - 2(e^{-\kappa (T-t)} - 1)\right \}. {}\\ \end{array}$$
  7. 7.

    One could use this insight to infer a value for the unknown factor θ from the currently observed yield curve, from which one could obtain an estimate of ρ .

  8. 8.

    Note that \(\frac{d} {\mathit{dt}}\mathcal{K}(t) =\kappa (t)\) so that \(\frac{d} {\mathit{dt}}e^{\mathcal{K}(t)} = e^{\mathcal{K}(t)}\kappa (t)\). Multiplying across (23.44) by \(e^{-\mathcal{K}(t)}\) and re-arranging we obtain

    $$\displaystyle{ \frac{d} {\mathit{dt}}(e^{-\mathcal{K}(t)}b(t,T)) = -e^{-\mathcal{K}(t)}.}$$

    The result then follows by integrating t to T and following manipulations similar to those in footnote 5.

  9. 9.

    In fact CIR employ a dynamic general equilibrium framework to derive the bond pricing equation and under specific assumptions about investor preferences, end up with a market price of risk given by (23.54).

  10. 10.

    A more precise notation for the option value would be C(r, t, T C , T). However to ease the notation we shall usually just write C(r, t), unless we need to highlight the dependence on option maturity (T C ) or underlying bond maturity (T), as in Sect. 23.7.

  11. 11.

    Alternatively we could use the result in Sect. 6.6 for the stochastic differential equation followed by the ratio of the two diffusions (23.17) and (23.85).

  12. 12.

    Make the identification T → T C , λ → −1, g[x(s), s] → x(s), x(s) → r(s), λ → −1, \(f(x(T)) \rightarrow C(r(T_{C}),T_{C})\).

  13. 13.

    The measure \(\mathbb{P}^{{\ast}}\) that we develop below is known as the forward measure because under this measure the instantaneous forward rate equals the expected future forward rate, as we show in Sect. 25.5

  14. 14.

    In the ensuing discussion we write the bond and option prices with their full functional dependence, e.g. C(r, t, T C , T) and P(r, t, T C ) to give greater clarity.

  15. 15.

    Strictly speaking we should write X(r, t, T C , T). However it turns out (see Eq. (23.97) below) that the dynamics for r do not enter directly into the dynamics for X.

  16. 16.

    From Eq. (23.13) we have that \(\mathop{\mathrm{var}}\nolimits \left (\frac{\mathit{dP}} {P} \right ) = \left ( \frac{\sigma _{r}} {P} \frac{\partial P} {\partial r} \right )^{2}\mathit{dt}\) and from Eq. (23.109), \(\frac{1} {P} \frac{\partial P} {\partial r} = -b(t,T)\).

References

  • Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985a). A theory of the term structure of interest rates. Econometrica, 53(2), 385–406.

    Article  Google Scholar 

  • Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985b). An intertemporal general equilibrium model of asset prices. Econometrica, 53(2), 363–384.

    Article  Google Scholar 

  • Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies, 3(4), 573–592.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.

    Article  Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterisation of the term structure. Journal of Financial Economics, 5, 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix

Appendix 23.1 Solution of the Ordinary Differential Equations (23.59) and (23.60)

Consider the ordinary differential equation

$$\displaystyle\begin{array}{rcl} \frac{db} {\mathit{dt}} =\alpha _{0}b^{2} +\alpha _{ 1}b - 1 =\alpha _{0}\left [b^{2} + \frac{\alpha _{1}} {\alpha _{0}}b -\frac{1} {\alpha _{0}} \right ].& &{}\end{array}$$
(23.125)

where α 0 and α 1 are constants. The quadratic in the brackets on the RHS can be factorised as

$$\displaystyle{b^{2} + \frac{\alpha _{1}} {\alpha _{0}}b -\frac{1} {\alpha _{0}} = (b -\phi _{1})(b -\phi _{2}),}$$

where

$$\displaystyle\begin{array}{rcl} \phi _{1}& =& -\frac{\alpha _{1}} {2\alpha _{0}} + \frac{\beta } {2\alpha _{0}}, \\ \phi _{2}& =& -\frac{\alpha _{1}} {2\alpha _{0}} - \frac{\beta } {2\alpha _{0}}, \\ \beta & =& \sqrt{\alpha _{1 }^{2 } + 4\alpha _{0}}.{}\end{array}$$
(23.126)

Thus the ordinary differential equation (23.125) can be written

$$\displaystyle{ \frac{db} {\mathit{dt}} =\alpha _{0}(b -\phi _{1})(b -\phi _{2}), }$$
(23.127)

or as

$$\displaystyle{ \frac{db} {(b -\phi _{1})(b -\phi _{2})} =\alpha _{0}\mathit{dt}.}$$

With some slight re-arrangement the last equation can be written

$$\displaystyle{ \left [ \frac{1} {b -\phi _{1}} - \frac{1} {b -\phi _{2}}\right ]db =\alpha _{0}(\phi _{1} -\phi _{2})\mathit{dt} =\beta \mathit{dt}. }$$
(23.128)

Integrating the last equation from t to T we obtain

$$\displaystyle{ \left [\ln \left (\frac{b -\phi _{1}} {b -\phi _{2}}\right ))\right ]_{t}^{T} =\beta (T - t), }$$
(23.129)

i.e.

$$\displaystyle{\ln \left (\frac{b(T,T) -\phi _{1}} {b(T,T) -\phi _{2}}\right ) -\ln \left (\frac{b(t,T) -\phi _{1}} {b(t,T) -\phi _{2}}\right ) =\beta (T - t),}$$

which on making use of b(T, T) = 0 becomes

$$\displaystyle{\ln \left (\frac{b(t,T) -\phi _{1}} {b(t,T) -\phi _{2}}\right ) =\ln \left (\frac{\phi _{1}} {\phi _{2}}\right ) -\beta (T - t),}$$

i.e.

$$\displaystyle\begin{array}{rcl} \frac{b(t,T) -\phi _{1}} {b(t,T) -\phi _{2}}& =& \exp \left [\ln (\frac{\phi _{1}} {\phi _{2}}) -\beta (T - t)\right ] = \frac{\phi _{1}} {\phi _{2}}e^{-\beta (T-t)}. {}\\ \end{array}$$

Solving the last equation for b(t, T) we obtain

$$\displaystyle{ b(t,T) = \frac{\phi _{1}\phi _{2}(1 - e^{-\beta (T-t)})} {\phi _{2} -\phi _{1}e^{-\beta (T-t)}}. }$$
(23.130)

Using the fact that \(\phi _{1}\phi _{2} = -1/\alpha _{0}\) this simplifies slightly to

$$\displaystyle{ b(t,T) = \frac{1} {\alpha _{0}} \frac{[1 - e^{-\beta (T-t)}]} {[\phi _{1}e^{-\beta (T-t)} -\phi _{2}]}. }$$
(23.131)

To solve (23.59), we set \(\alpha _{0} =\sigma ^{2}/2,\alpha _{1} =\alpha +\lambda\), so that we obtain

$$\displaystyle{ b(t,T) = \frac{2} {\sigma ^{2}} \frac{[1 - e^{-\beta (T-t)}]} {[\phi _{1}e^{-\beta (T-t)} -\phi _{2}]}, }$$
(23.132)

where

$$\displaystyle\begin{array}{rcl} \phi _{1}& =& -\frac{(\alpha +\lambda )} {\sigma ^{2}} + \frac{\beta } {\sigma ^{2}}, \\ \phi _{2}& =& -\frac{(\alpha +\lambda )} {\sigma ^{2}} - \frac{\beta } {\sigma ^{2}}, \\ \beta & =& \sqrt{(\alpha +\lambda )^{2 } + 2\sigma ^{2}}.{}\end{array}$$
(23.133)

Next from Eq. (23.62) of Sect. 23.4.3

$$\displaystyle{a(t,T) =\alpha \gamma \int _{ t}^{T}b(s,T)\mathit{ds}.}$$

Making the transformation \(u =\beta (T - s)\) we see that

$$\displaystyle{a(t,T) = \frac{+\alpha \gamma } {\beta } \int _{0}^{\beta (T-t)}b(T -\frac{u} {\beta },T)\mathit{du}.}$$

Substituting the expression (23.132) for b(t, T) (and setting \(\tau = T - t\)) we obtain

$$\displaystyle{a(t,T) = +\frac{\alpha \gamma } {\beta } \frac{2} {\sigma ^{2}} \int _{0}^{\beta \tau } \frac{(1 - e^{-u})} {(\phi _{1}e^{-u} -\phi _{2})}\mathit{du}.}$$

Consider the integral

$$\displaystyle\begin{array}{rcl} I& =& \int _{0}^{\beta \tau }\left ( \frac{1 - e^{-u}} {\phi _{1}e^{-u} -\phi _{2}}\right )\mathit{du} {}\\ & =& \int _{0}^{\beta \tau } \frac{\mathit{du}} {\phi _{1}e^{-u} -\phi _{2}} -\int _{0}^{\beta \tau } \frac{e^{-u}\mathit{du}} {\phi _{1}e^{-u} -\phi _{2}} {}\\ & =& \int _{0}^{\beta \tau } \frac{e^{u}\mathit{du}} {\phi _{1} -\phi _{2}e^{u}} -\int _{0}^{\beta \tau } \frac{e^{-u}\mathit{du}} {\phi _{1}e^{-u} -\phi _{2}} {}\\ & =& \left [\frac{-1} {\phi _{2}} \ln (\phi _{1} -\phi _{2}e^{u})\right ]_{ 0}^{\beta \tau } + \left [\frac{1} {\phi _{1}} \ln (\phi _{1}e^{-u} -\phi _{ 2})\right ]_{0}^{\beta \tau } {}\\ & =& \frac{(\phi _{1} -\phi _{2})} {\phi _{1}\phi _{2}} \ln (\phi _{1} -\phi _{2}) -\frac{1} {\phi _{2}} \ln (\phi _{1} -\phi _{2}e^{\beta \tau }) + \frac{1} {\phi _{1}} \ln (\phi _{1}e^{-\beta \tau }-\phi _{ 2}) {}\\ & =& \frac{(\phi _{1} -\phi _{2})} {\phi _{1}\phi _{2}} \ln (\phi _{1} -\phi _{2}) -\frac{1} {\phi _{2}} \ln (\phi _{1} -\phi _{2}e^{\beta \tau }) + \frac{1} {\phi _{1}} \ln [e^{-\beta \tau }/(\phi _{ 1} -\phi _{2}e^{\beta \tau })] {}\\ & =& -\frac{\beta \tau } {\phi _{1}} + \frac{(\phi _{1} -\phi _{2})} {\phi _{1}\phi _{2}} \left \{\ln (\phi _{1} -\phi _{2}) -\ln (\phi _{1} -\phi _{2}e^{\beta \tau })\right \}. {}\\ \end{array}$$

Finally

$$\displaystyle{I = -\frac{\beta } {\phi _{1}}\tau -\frac{(\phi _{1} -\phi _{2})} {\phi _{1}\phi _{2}} \ln \left (\frac{\phi _{1} -\phi _{2}e^{\beta \tau }} {\phi _{1} -\phi _{2}} \right ),}$$

and so

$$\displaystyle{a(t,T) = \frac{2\alpha \gamma } {\beta \sigma ^{2}} \left [\frac{-\beta (T - t)} {\phi _{1}} -\frac{(\phi _{1} -\phi _{2})} {\phi _{1}\phi _{2}} \ln (\frac{\phi _{1} -\phi _{2}e^{\beta (T-t)}} {\phi _{1} -\phi _{2}} )\right ].}$$

Using the fact that \(\phi _{1}\phi _{2} = -2/\sigma ^{2}\) and \(\phi _{1} -\phi _{2} = 2\beta /\sigma ^{2}\) we finally obtain

$$\displaystyle{ a(t,T) = \frac{2\alpha \gamma } {\sigma ^{2}} \left [-\frac{(T - t)} {\phi _{1}} +\ln \left (\frac{\phi _{1} -\phi _{2}e^{\beta (T-t)}} {\phi _{1} -\phi _{2}} \right )\right ]. }$$
(23.134)

When allowing for time-varying coefficients, the steps leading to (23.128) remain the same as in the constant coefficients case, only now ϕ 1, ϕ 2, σ and β become functions of time. Thus in order to use the same functional form for the solution we need to define

$$\displaystyle{\bar{\beta }(t,T) = \frac{1} {T - t}\int _{t}^{T}\beta (s)\mathit{ds}.}$$

Thus integration of (23.128) will yield (23.132) with β replaced by \(\bar{\beta }(t,T)\).

Appendix 23.2 Calculating θ(T) in the Calibration of the Hull–White Model

From Eq. (23.110) we note that

$$\displaystyle{ \frac{\partial b} {\partial T} = e^{\mathcal{K}(t)-\mathcal{K}(T)}.}$$

Differentiating Eq. (23.117) with respect to T yields

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial T}a(0,T)& =& b(T,T)\theta (T)+\!\int _{0}^{T}e^{\mathcal{K}(s)-\mathcal{K}(T)}\theta (s)\mathit{ds}- \frac{\partial } {\partial T}\left (\frac{1} {2}\int _{0}^{T}\!\!\sigma ^{2}(s)b^{2}(s,T)\mathit{ds}\right ) {}\\ & =& e^{-\mathcal{K}(T)}\int _{ 0}^{T}e^{\mathcal{K}(s)}\theta (s)\mathit{ds} - \frac{\partial } {\partial T}\left (\frac{1} {2}\int _{0}^{T}\sigma ^{2}(s)b^{2}(s,T)\mathit{ds}\right ). {}\\ \end{array}$$

Rearranging

$$\displaystyle{e^{\mathcal{K}(T)} \frac{\partial } {\partial T}a(0,T) =\int _{ 0}^{T}e^{\mathcal{K}(s)}\theta (s)\mathit{ds} - e^{\mathcal{K}(T)} \frac{\partial } {\partial T}\left (\frac{1} {2}\int _{0}^{T}\sigma ^{2}(s)b^{2}(s,T)\mathit{ds}\right ).}$$

Differentiating again with respect to T we obtain

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial T}\left (e^{\mathcal{K}(T)} \frac{\partial } {\partial T}a(0,T)\right )& =& e^{\mathcal{K}(T)}\theta (T) {}\\ & & \quad - \frac{\partial } {\partial T}\left (e^{\mathcal{K}(T)} \frac{\partial } {\partial T}\left (\frac{1} {2}\int _{0}^{T}\sigma ^{2}(s)b^{2}(s,T)\mathit{ds}\right )\right ). {}\\ \end{array}$$

Rearranging this last equation we obtain

$$\displaystyle\begin{array}{rcl} \theta (T)& =& e^{-\mathcal{K}(T)} \frac{\partial } {\partial T}\left (e^{\mathcal{K}(T)} \frac{\partial } {\partial T}a(0,T)\right ) {}\\ & & \qquad + e^{-\mathcal{K}(T)} \frac{\partial } {\partial T}\left (e^{\mathcal{K}(T)} \frac{\partial } {\partial T}\left (\frac{1} {2}\int _{0}^{T}\sigma ^{2}(s)b^{2}(s,T)\mathit{ds}\right )\right ). {}\\ \end{array}$$

Problems

Problem 23.1

Equation (23.15) shows that under the equivalent martingale measure the bond price dynamics are given by

$$\displaystyle{\frac{\mathit{dP}(t,T)} {P(t,T)} = r(t)\mathit{dt} +\sigma _{P}(r,t,T)d\tilde{z}(t)}$$

with σ P (r, t, T) defined by (23.5). Use Ito’s lemma to show that the yield to maturity

$$\displaystyle{\rho (t,T) = - \frac{1} {(T - t)}\ln P(t,T)}$$

satisfies

$$\displaystyle{d\rho (t,T) = \frac{1} {(T - t)}\left [\left (\rho (t,T) + \frac{1} {2}\sigma _{P}^{2}(r,t,T) - r(t)\right )\mathit{dt} -\sigma _{ P}(r,t,T)d\tilde{z}(t)\right ].}$$

Problem 23.2

Recall the relation (22.9) between the bond price P(t, T) and the instantaneous forward rate f(t, T). By considering the quantity

$$\displaystyle{B(t,T) =\ln P(t,T)}$$

and assuming that

$$\displaystyle{d\left (\frac{\partial B(t,T)} {\partial T} \right ) = \frac{\partial } {\partial T}\mathit{dB}(t,T),}$$

show that f(t, T) satisfies the stochastic differential equations

$$\displaystyle{df(t,T) = -\sigma (t,T)\sigma _{P}(t,T)\mathit{dt} +\sigma (t,T)\mathit{d}\tilde{z}}$$

where

$$\displaystyle{\sigma (t,T) = - \frac{\partial } {\partial T}\sigma _{P}(t,T).}$$

Problem 23.3

Consider the Hull–White model of Sect. 23.4.2, for which the bond price P(t, T) is given by (23.25) with a(t, T) and b(t, T) given by Eqs. (23.47) and (23.48). Obtain the corresponding expression for the forward rate f(t, T). Show what this expression reduces to in the special case of the Vasicek model.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiarella, C., He, XZ., Nikitopoulos, C.S. (2015). Interest Rate Derivatives: One Factor Spot Rate Models. In: Derivative Security Pricing. Dynamic Modeling and Econometrics in Economics and Finance, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45906-5_23

Download citation

Publish with us

Policies and ethics