Skip to main content

Enzymatic Degradation of Lignocellulose for Synthesis of Biofuels and Other Value-Added Products

  • Conference paper
  • First Online:
  • 1027 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 129))

Abstract

Wood is a renewable source for biofuels and chemicals. An efficient pretreatment is required to destroy the highly ordered and complex structure of wood fibres and to improve their enzymatic degradability. To understand the effectiveness of pretreatment on enzymatic degradability, high-throughput analysis of cellulose kinetics using insoluble cellulosic substrate is required. The BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of cellulose samples in microtiter plates. It is used to monitor the hydrolysis of three different cellulosic substrates catalysed by a commercial cellulase preparation from Trichoderma reesei (Celluclast). Moreover, the reduction of crystallinity and particle size is a key determining factor for an efficient hydrolysis of cellulose particles in heterogeneous system. To increase the sugar release, crystallinity and particle size were decreased by the dissolution of spruce wood in the ionic liquid EMIM Ac resulting in high conversion and reaction rates. Additionally, the enzymatic action on lignin model substrates is characterised using an activity assay and cyclic voltammetry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A [a.u.]:

Absorbance

CRS [mol/cm3]:

Concentration in Randles-Sevcik equation

D [cm2/s]:

Diffusion coefficient

E [J]:

Particle energy

E° [V]:

Redox potential

Epa [V]:

Anode potential

Epc [V]:

Cathode potential

F [C/mol]:

Faraday constant

R [J/mol/K]:

General gas constant

T [K]:

Temperature

V [V/s]:

Scan speed

Vmax [g/L/h]:

Maximum reaction rate

a [cm2]:

Electrode surface

c [g/L]:

Product concentration

f [1/s]:

Frequency

h [J s]:

Planck’s constant

i [A]:

Electricity

ip [A]:

Peak current

ipa [A]:

Peak anodic current

ipc [A]:

Peak cathodic current

kf [1/M/s]:

Catalytic constant

Km [mol/L]:

Michaelis-Menten constant

l [m]:

Path length

n [–]:

Number of transferred electrons

q [–]:

Scattering vector

r [m]:

Characteristic length

αM [–]:

Mie size parameter

δ [°]:

Scattering angle

ε [L/mol/cm]:

Extinction coefficient

λ [m]:

Wavelength

ABTS:

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

Btu:

British thermal unit

gal:

Gallon

HBT:

1-Hydroxybenzotriazol

lb:

Pound

MTP:

Microtiterplate

TEMPO:

(2,2,6,6-tetra methylpiperidin-1-yl)Oxidanyl

VA:

Veratryl alcohol

References

  1. Mosier, N., Wyman, C.E., Dale, B.E., Elander, R., Lee, Y.Y., Holtzapple, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  2. Holtzapple, M.T., Humphrey, A.E.: The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnol. Bioeng. 26, 670–676 (1984)

    Article  Google Scholar 

  3. Pan, X.J., Arato, C., Gilkes, N., Gregg, D., et al.: Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng. 90, 473–481 (2005)

    Article  Google Scholar 

  4. Stockburger, P.: An overview of near-commercial and commercial solvent-based pulping processes. Tappi J. 76(6), 71–74 (1993)

    Google Scholar 

  5. Pye, E.K., Lora, J.H.: The Alcell process-a proven alternative to kraft pulping. Tappi J. 74, 113–118 (1991)

    Google Scholar 

  6. Pan, X., Xie, D., Kang, K.Y., Yoon, S.L., Saddler, J.N.: Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. In: Applied Biochemistry and Biotechnology, ABAB Symposium, Part 3, pp. 367–377 (2007)

    Google Scholar 

  7. Domínguez de María, P., vom Stein, T., Grande, P., Leitner, W., Sibilla, F.: Integrated process for the selective fractionation and separation of lignocellulose in its main components. EP 11154705.5. Filed, (2011)

    Google Scholar 

  8. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)

    Article  Google Scholar 

  9. Swatloski, R.P., Rogers, R.D., Holbrey, J.D.: Dissolution and processing of cellulose using ionic liquids. World Patent WO/03/029329, 2003

    Google Scholar 

  10. Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P.: Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009)

    Article  Google Scholar 

  11. Viell, J., Marquardt, W.: Disintegration and dissolution kinetics of wood chips in ionic liquids. Holzforschung 65, 519–525 (2011)

    Google Scholar 

  12. Kragl, U., Eckstein, M., Kaftzik, N.: Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13(6), 565–571 (2002)

    Article  Google Scholar 

  13. Engel, P., Mladenov, R., Wulfhorst, H., Jäger, G., Spiess, A.C.: Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem. 12(11), 1959–1966 (2010)

    Article  Google Scholar 

  14. Pottkämper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., Ignatiev, N., Streit, W.R.: Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem. 11, 957–965 (2009)

    Article  Google Scholar 

  15. Wong, T.S., Roccatano, D., Loakes, D., Tee, K.L., Schenk, A., Hauer, B., Schwaneberg, U.: Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): a random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol. J. 3, 74–82 (2008)

    Article  Google Scholar 

  16. Hall, M., Bansal, P., Lee, J.H., Realff, M.J., Bommarius, A.S.: Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J. 277(6), 1571–1582 (2010)

    Google Scholar 

  17. Hall, M., Bansal, P., Lee, J.H., Realff, M.J., Bommarius, A.S.: Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour. Technol. 102, 2910–2915 (2011)

    Article  Google Scholar 

  18. Bommarius, A.S., Katona, A., Cheben, S.E., Patel, A.S., Ragauskas, A.J., Knudson, K., Pu, Y.: Cellulase kinetics as a function of cellulose pretreatment. Metab. Eng 10, 370–381 (2008)

    Article  Google Scholar 

  19. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    Article  Google Scholar 

  20. Mosier, N.S., Hall, P., Ladisch, C.M., Ladisch, M.R.: Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng. Biotechnol. 65, 23–40 (1999)

    Google Scholar 

  21. Holladay, J.E., White, J.F., et al.: Results of screening for potential candidates from biorefinery lignin. Top Value-Added Chem. Biomass 2, 87 (2007)

    Google Scholar 

  22. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257 (1987)

    Article  Google Scholar 

  23. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  24. Chen, C.S., Penner, M.H.: Turbidity-based assay for polygalacturonic acid depolymerase activity. J Agric. Food Chem. 55, 5907–5911 (2007)

    Article  Google Scholar 

  25. Wang, P., Broda, P.: Stable defined substrate for turbidimetric assay of endoxylanases. Appl. Environ. Microbiol. 58, 3433–3436 (1992)

    Google Scholar 

  26. Fan, L.T., Lee, Y.H., Beardmore, D.H.: Mechanism of the enzymatic hydrolysis of cellulose-effects of major structural features of cellulose on enzymatic-hydrolysis. Biotechnol. Bioeng. 22, 177–199 (1980)

    Article  Google Scholar 

  27. Walker, L.P., Wilson, D.B., Irwin, D.C.: Measuring fragmentation of cellulose by Thermomonospora fusca cellulase. Enzyme Microb. Technol. 12, 378–386 (1990)

    Article  Google Scholar 

  28. Bowen, P.: Particle size distribution measurement from millimetres to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 23(5) (2002)

    Google Scholar 

  29. Nummi, M., Fox, P.C., Nikupaavola, M.L., Enari, T.M.: Nephelometric and turbidometric assays of cellulase activity. Anal. Biochem. 116, 133–136 (1981)

    Article  Google Scholar 

  30. Vogel, H., Gerthsen, C.: Physik. Springer GmbH, Berlin (1976)

    Google Scholar 

  31. Urban, C.: Development of fiber optic based dynamic light scattering for a characterization of turbid suspensions. Dissertation, Swiss Federal Institute of Technology, Zurich (1999)

    Google Scholar 

  32. Hecht, E.: Optik. Oldenburg Wissenschaftsverlag GmbH 4, 159 (2005)

    Google Scholar 

  33. Samorski, M., Müller-Newen, G., Büchs, J.: Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. Biotechnol. Bioeng. 92(1), 61–68 (2005)

    Article  Google Scholar 

  34. Bourbonnais, R., Leech, D., et al.: Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochem. Biophys. Acta 1379(3), 381–390 (1998)

    Article  Google Scholar 

  35. Nicholson, R.S., Shain, I.: Theory of stationary electrode polarography—single scan and cyclic methods applied to reversible irreversible and kinetic systems. Anal. Chem. 36(4), 706 (1964)

    Article  Google Scholar 

  36. Jäger, G., Wulfhorst, H., Zeithammel, E.U., Ellinidou, E., Spiess, A.C., Büchs, J.: Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol. J. 6, 74–85 (2011)

    Article  Google Scholar 

  37. Wulfhorst, H., Jäger, G., Ellinidou, E., Büchs, J., Spiess, A.C.: Charakterisierung von Cellulasepräparationen mittels Streulicht. Chem. Ing. Tech. 82(1–2), 117–120 (2010)

    Google Scholar 

  38. Jäger, G., Wu, Z., Garschhammer, K., Engel, P., et al.: Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol. Biofuels 3, 1–12 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed as part of the Nordrhein-Westfalen (NRW) Research School “Brennstoffgewinnung aus nachwachsenden Rohstoffen (BrenaRo)” and the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje C. Spiess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wulfhorst, H. et al. (2015). Enzymatic Degradation of Lignocellulose for Synthesis of Biofuels and Other Value-Added Products. In: Klaas, M., Pischinger, S., Schröder, W. (eds) Fuels From Biomass: An Interdisciplinary Approach. BrenaRo 2011. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45425-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45425-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45424-4

  • Online ISBN: 978-3-662-45425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics