Skip to main content

Using Saliva Secretions to Model Disease Progression

  • Chapter
  • First Online:
Advances in Salivary Diagnostics

Abstract

To date, because of the complexity and heterogeneity of cancer, no individual model recapitulates all aspects of this disease. The authors of this chapter developed a molecular model that utilizes one of the most easily obtained body fluids for tumor marker analysis. The in vivo model can fill in the current gaps in our understanding of cancer pathogenesis, signaling pathways, the efficacy of varying chemotherapeutics, identifying novel therapies, and, most importantly, shed new light on metastatic progression that is the principal cause of mortality. We propose that, secondary to cancer, the malignancy’s rapid growth alters the proteomic content of the tissue microenvironment. These changes may manifest in up- or downregulation of salivary protein concentrations, which can be used as a sentinel for cancer modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eccles SA, Aboagye EO, Ali S, Anderson A, et al. Clinical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013;R92. http://breast-cancer-research.com/content/15/5/R92.

  2. Kulkarni YM, Suarez V, Klinke DJ. Inferring predominant pathways in cellular models of breast cancer using limited sample proteomic profiling. BMC Cancer. 2010;10:291–303.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    Article  PubMed  Google Scholar 

  4. Tordai A, Wang J, Andre F, Liedtke C, Yan K, Sotiriou C, Hortobagy G, Symmans WF, Pusztai L. Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res. 2008;10:R37.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hennighausen L. Mouse models for breast cancer. Breast Cancer Res. 2000;2(1):2–7.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Francia G, Cruz-Manos W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11:135–41.

    Article  PubMed  Google Scholar 

  7. Gartner LP & Hiatt JL. Female reproductive system. In: Gartner LP, Hiatt JL, editors. Color atlas and text of histology. 6th ed. Baltimore: Lippincott Williams and Wilkins; 2009. p. 430–31.

    Google Scholar 

  8. McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11:249–68.

    Article  PubMed  Google Scholar 

  9. DeRoche TC, Hoschar AP, Hunt JL. Immunohistochemical evaluation of androgen receptor, HER-2/neu, and p53 in benign pleomorphic adenomas. Arch Pathol Lab Med. 2008;132(12):1907–11.

    PubMed  Google Scholar 

  10. Nasser SM, Faquin WC, Dayal Y. Expression of androgen, estrogen, and progesterone receptors in salivary gland tumors: frequent expression of androgen receptor in a subset of malignant salivary gland tumors. Am J Clin Pathol. 2003;119:801–6.

    Article  PubMed  Google Scholar 

  11. Streckfus CF, Bigler L, Tucci M, Thigpen JT. The presence of CA 15-3, c-erbB-2, EGFR, Cathepsin-D, and p53 in saliva among women with breast carcinoma. Can Invest. 2000;18(2):101–9.

    Article  Google Scholar 

  12. Kuerer HM, Thompson PA, Krishnamurthy S, Fritsche HA, Marcy SM, Babiera GV, Singletary SE, Cristofanilli M, Sneige N, Hunt KK. High and differential expression of Her2/neu extracellular domain in bilateral ductal fluids from women with unilateral invasive breast cancer. Clin Cancer Res. 2003;9:601–6.

    PubMed  Google Scholar 

  13. Turner R, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8:3–11.

    Article  PubMed  Google Scholar 

  14. Streckfus CF, Arreola D, Edwards C, Bigler L. A comparison of salivary protein profiles between her2/neu receptor positive and negative breast cancer patients: support for using salivary protein profiles for modeling breast cancer progression. J Oncol. 2012; Article ID 413256, 9 pages. doi:10.1155/2012/413256.

  15. Streckfus CF, Bigler L, Storthz K, Dubinsky WP. A comparison of the oncoproteomic profiles in pooled saliva specimens from individuals diagnosed with stage IIa and stage IIb ductal carcinoma of the breast and healthy controls. J Oncol. 2009;1–12. Article ID 737619.

    Google Scholar 

  16. Streckfus CF, Mayorga-Wark O, Daniel Arreola D, Edwards C, Bigler L, Dubinsky WP. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Can Invest. 2008;26(2):159–67.

    Article  Google Scholar 

  17. Streckfus CF, Bigler L. The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women: the results of a five year translational study. J Adv Dent Res. 2005;18:17–22.

    Article  Google Scholar 

  18. Bigler LG, Streckfus CF. A unique protein screening analysis of stimulated whole saliva from normal and breast cancer patients. Preclinica. 2004;2(1):52–6.

    Google Scholar 

  19. Streckfus CF, Bigler L, Dellinger TD, Dai X, Kingman A, Thigpen JT. The presence of c-erbB-2, and CA 15-3 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res. 2000;6(6):2363–70.

    PubMed  Google Scholar 

  20. Hudelist G, Singer CF, Pischinger KI, et al. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics. 2006;6:1989–2002.

    Article  PubMed  Google Scholar 

  21. Wulfkuhle JD, Sgroi DC, Krutzsch H, et al. Proteomics of human breast carcinoma in situ. Cancer Res. 2002;62:6740–9.

    PubMed  Google Scholar 

  22. Minafra IP, Cancemi P, Fontana S, et al. Expanding the protein catalogue in the proteome reference map of human breast cancer cells. Proteomics. 2006;6:2609–25.

    Article  PubMed  Google Scholar 

  23. Lai TC, Chou HC, Chen YW, Lee TR, Chan HT, Shen HH, Lee WT, Lin ST, Lu YC, Wu CL, Chan HL. Secretomic and proteomic analysis of potential breast cancer markers by two-dimensional differential gel electrophoresis. J Proteome Res. 2010;9(3):1302–22.

    Article  PubMed  Google Scholar 

  24. Alldridge L, Metodieva G, Greenwood C, Al-Janabi K, Thwaites L, Sauven P, Metodiev M. Proteome profiling of breast tumors by gel electrophoresis and nanoscale electrospray ionization mass spectrometry. J Proteome Res. 2008;7(4):1458–69.

    Article  PubMed  Google Scholar 

  25. Varnum SM, Covington CC, Woodbury RL, et al. Proteomic characterization of nipple aspirate fluid: identification of potential biomarkers of breast cancer. Breast Cancer Res Treat. 2003;80(1):87–97.

    Article  PubMed  Google Scholar 

  26. Kaklamani VG, Wisinski KB, Sadim M, Gulden C, et al. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA. 2008;300(13):1523–31.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights. 2006;2:1–48.

    Google Scholar 

  28. Chamberry A, Farina A, Di Maro A, et al. Proteomic analysis of MCF-7 cell lines expressing the zinc finger or proline-rich domain of retinoblastoma-in reacting-zinc-finger protein. J Proteome Res. 2006;5:1176–85.

    Article  Google Scholar 

  29. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17(9):2941–53.

    PubMed  Google Scholar 

  30. Kawabata S, Oka M, Soda H, Shiozawa K, Nakatomi K, et al. Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res. 2003;9(8):3052–7.

    PubMed  Google Scholar 

  31. Li XQ, Li J, Shi SB, Chen P, Yu LC, Bao QL. Expression of MRP1, BCRP, LRP and ERCC1 as prognostic factors in non-small cell lung cancer patients receiving postoperative cisplatin-based chemotherapy. Int J Biol Markers. 2009;24(4):230–7.

    PubMed  Google Scholar 

  32. Valque H, Gouyer V, Gottrand F, Desseyn JL. MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS One. 2012;7(10):e46699. doi:10.1371/journal.pone.0046699. Epub 2012 Oct 2.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y, Khanna R, Tamburini P, Swaroop A, Kandpal RP. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene. 2006;25(16):2328–38.

    Article  PubMed  Google Scholar 

  34. Cancemi P, Di Cara G, Albanese NN, Costantini F, et al. Large-scale proteomic identification of S100 proteins in breast cancer tissues. BMC Cancer. 2010;10:476.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer. 2006;13(4):1033–67.

    Article  PubMed  Google Scholar 

  36. Somiari RI, Sullivan A, Russell S, et al. High – throughput proteomic analysis of infiltrating ductal carcinoma of the breast. Proteomics. 2003;3:1863–73.

    Article  PubMed  Google Scholar 

  37. Murray GI, Taylor MC, McFadyen MCE, et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 1997;57:3026–31.

    PubMed  Google Scholar 

  38. Alshareeda AT, Soria D, Garibaldi JM, Rakha E, Nolan C, Ellis IO, Green AR. Characteristics of basal cytokeratin expression in breast cancer. Breast Cancer Res Treat. 2013;139(1):23–37.

    Article  PubMed  Google Scholar 

  39. Wu SL, Hancock WS, Goodrich GG, Kunitake ST. A approach to the proteomic analysis of a breast cancer cell line (SKBR3). Proteomics. 2003;3:1037–46.

    Article  PubMed  Google Scholar 

  40. Benachenhou N, Guiral S, Gorska-Flipot I, et al. Frequent loss of heterozygosity at the DNA mismatch-repair loci hMLH1 and hMSH3 in sporadic breast cancer. Br J Cancer. 1999;79:1012–7.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zhi X, Zhao D, Wang Z, Zhou Z, Wang C, Chen W, Liu R, Chen C. E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res. 2013;73:385–94.

    Article  PubMed  Google Scholar 

  42. Hadnagy A, Beaulieu R, Balicki D. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther. 2008;7(4):740–8.

    Article  PubMed  Google Scholar 

  43. Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res. 2012;2(5):589–97.

    PubMed Central  PubMed  Google Scholar 

  44. Collie-Duguid ES, Sweeney K, Stewart KN, Miller ID, Smyth E, Heys SD. SerpinB3, a new prognostic tool in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012;132(3):807–18.

    Article  PubMed  Google Scholar 

  45. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72(1):41–4.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Short SM, Yoder BJ, Tarr SM, Prescott NL, et al. The expression of the cytoskeletal focal adhesion protein paxillin in breast cancer correlates with HER2 overexpression and May help predict response to chemotherapy: a retrospective immunohistochemical study. Breast J. 2007;13(2):130–9.

    Article  PubMed  Google Scholar 

  47. Alexander H, Stegner AL, Wagner-Mann C, Du Bois GC, Alexander S, Sauter ER. Proteomic analysis to identify breast cancer biomarkers in nipple aspirate fluid. Clin Cancer Res. 2004;10(22):7500–10.

    Article  PubMed  Google Scholar 

  48. Kao J, Salari K, Bocanegra M, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for gene discovery. PLoS ONE. 2009;4(7):e6146.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Pitteri SJ, Kelly-Spratt KS, Gurley KE, et al. Tumor microenvironment–derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res. 2011;71(15):5090–100.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Costa GG, Kaviski R, Souza LE, Urban CA, Lima RS, Cavalli IJ, Ribeiro EM. Proteomic analysis of non-tumoral breast tissue. Genet Mol Res. 2011;10(4):2430–42.

    Article  PubMed  Google Scholar 

  51. Pia-Foschini M, Reis-Filho JS, Eusebi V, et al. Salivary gland-like tumours of the breast: surgical and molecular pathology. J Clin Pathol. 2003;56:497–506.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Wick MR, Ockner DM, Mills SE, Ritter JH, Swanson PE. Homologous carcinomas of the breasts, skin, and salivary glands: a histologic and immunohistochemical comparison of ductal mammary carcinoma, ductal sweat gland carcinoma and salivary duct carcinoma. Am J Clin Pathol. 1988;109:75–84.

    Google Scholar 

  53. Streckfus C, Bigler L, Dellinger T, Kuhn M, Chouinard N, Dai X. The expression of the c-erbB-2 receptor protein in glandular salivary secretions. J Oral Pathol Med. 2004;33:595–600.

    Article  PubMed  Google Scholar 

  54. Brinkley J, Copeland L, Streckfus C, Tucci M, Benguzzi H. Sustained delivery of HER-2/NEU antibody by TCPL delivery device using adult male rats as a model. Biomed Sci Instrum. 2003;39:324–8.

    PubMed  Google Scholar 

  55. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8.

    Article  PubMed  Google Scholar 

  56. Hendrix A, Hume AN. Exosome signaling in mammary gland development and cancer. Int J Dev Biol. 2011;55:879–87.

    Article  PubMed  Google Scholar 

  57. Lau CS, Wong DTW. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One. 2012;7(3):e33037. doi:10.1371/journal.pone.0033037. Epub 2012 Mar 20.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Translat Med. 2011;9:9. http://www.translational-medicine.com/content/9/1/9. Accessed 17 Jan 2014.

  59. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.

    Article  PubMed  Google Scholar 

  60. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Ogawa Y, Miura Y, Harazono A, Kani-Azuma M, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13–23.

    Article  PubMed  Google Scholar 

  62. Palazzolo G, Albanese NN, DI Cara G, Gygax D, Vittorelli ML, Pucci-Minafra I. Proteomic analysis of exosome-like vesicles derived from breast cancer cells. Anticancer Res. 2012;32(3):847–60.

    PubMed  Google Scholar 

  63. Streckfus CF, Romaguera J, Streckfus CE. The use of salivary protein secretions as an in vivo model to study mantel cell lymphoma progression and treatment. Cancer Invest. 2013;31(7):494–9.

    Article  PubMed  Google Scholar 

  64. Ohshiro K, Rosenthal DI, Koomen JM, Streckfus CF, Chambers M, Kobayashi R, El-Naggar AK. Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int J Oncol. 2007;30:743–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

The research presented in this chapter was supported by the Avon Breast Cancer Foundation (#07-2007-071), Komen Foundation (KG080928), Gillson-Longenbaugh Foundation, and the Texas Ignition Fund. The authors would also like to thank Applied Biomics Inc. for the 2D-Gel analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Streckfus DDS, MA, FAAOM, FAGD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streckfus, C.F., Bigler, L., Edwards, C., Guajardo-Streckfus, C., Bigler, S.A. (2015). Using Saliva Secretions to Model Disease Progression. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics