Skip to main content

A Graph Modification Approach for Finding Core–Periphery Structures in Protein Interaction Networks

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

  • 1846 Accesses

Abstract

The core–periphery model for protein interaction (PPI) networks assumes that protein complexes in these networks consist of a dense core and a possibly sparse periphery that is adjacent to vertices in the core of the complex. In this work, we aim at uncovering a global core–periphery structure for a given PPI network. We propose two exact graph-theoretic formulations for this task, which aim to fit the input network to a hypothetical ground truth network by a minimum number of edge modifications. In one model each cluster has its own periphery, and in the other the periphery is shared. We first analyze both models from a theoretical point of view, showing their NP-hardness. Then, we devise efficient exact and heuristic algorithms for both models and finally perform an evaluation on subnetworks of the S. cerevisiae PPI network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)

    Article  Google Scholar 

  2. Berger, A.J.: Minimal forbidden subgraphs of reducible graph properties. Discussiones Mathematicae Graph Theory 21(1), 111–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Social Networks 21(4), 375–395 (1999)

    Article  Google Scholar 

  6. Chatr-aryamontri, A., et al.: The BioGRID interaction database: 2013 update. Nucleic Acids Research 41(D1), D816–D823 (2013)

    Google Scholar 

  7. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer and System Sciences 78(1), 211–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Z., Li, L., Chen, C.-F., Yu, P.S., Wang, J.Z.: G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery. Nucleic Acids Research 37(suppl. 2), W345–W349 (2009)

    Google Scholar 

  9. Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. The Electronic Journal of Combinatorics 11(1), R46 (2004)

    Google Scholar 

  10. Foldes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    MathSciNet  Google Scholar 

  11. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Subexponential fixed-parameter tractability of cluster editing. CoRR, abs/1112.4419 (2011)

    Google Scholar 

  12. Gavin, A.-C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  13. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic Journal of Computing 14(1-2), 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005)

    Article  Google Scholar 

  17. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Applied Mathematics 160(15), 2259–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leung, H.C., Xiang, Q., Yiu, S.-M., Chin, F.Y.: Predicting protein complexes from PPI data: a core-attachment approach. Journal of Computational Biology 16(2), 133–144 (2009)

    Article  MathSciNet  Google Scholar 

  19. Luo, F., Li, B., Wan, X.-F., Scheuermann, R.: Core and periphery structures in protein interaction networks. BMC Bioinformatics (Suppl. 4), S8 (2009)

    Google Scholar 

  20. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research 37(3), 825–831 (2009)

    Article  Google Scholar 

  21. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  23. Wu, M., Li, X., Kwoh, C.-K., Ng, S.-K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics 10(1), 169 (2009)

    Article  Google Scholar 

  24. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering algorithm for networks. In: Proc. 13th KDD, pp. 824–833. ACM (2007)

    Google Scholar 

  25. Zotenko, E., Guimarães, K.S., Jothi, R., Przytycka, T.M.: Decomposition of overlapping protein complexes: a graph theoretical method for analyzing static and dynamic protein associations. Algorithms for Molecular Biology 1(7) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckner, S., Hüffner, F., Komusiewicz, C. (2014). A Graph Modification Approach for Finding Core–Periphery Structures in Protein Interaction Networks. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics