Skip to main content

Timescale Analysis

  • Chapter
  • First Online:
Analysis of Kinetic Reaction Mechanisms

Abstract

A very characteristic feature of chemical kinetic models (in common with many other models in science) is that they contain a wide range of different timescales. This may have consequences for model behaviour and also for the selection of appropriate solution methods for the resulting equation systems. Several aspects of timescales of models are therefore discussed within this chapter. The discussion begins with the definition of various simple quantities used to measure timescales, such as species half-life and species lifetime, and explores their relationship to the time-dependent behaviour of the model. Timescales are closely related to the dynamic behaviour of the model following a perturbation within the chemical kinetic system, e.g., by suddenly altered concentrations. Systematic investigation of such perturbations can be achieved for large systems using computational singular perturbation (CSP) theory which is introduced here. Another common feature of chemical kinetic models is that the chemical kinetics relaxes the system to lower and lower-dimensional attractors until either a stationary point or chemical equilibrium (zero-dimensional attractor) or other low-dimensional attractor (e.g. a limit cycle) is reached. This leads to the importance of slow manifolds in the space of variables which will be investigated within this chapter. One practically important consequence of the presence of very different timescales is the stiffness of reaction kinetic models. Methods for dealing with stiffness within numerical models are therefore discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrover, A., Creta, F., Giona, M., Valorani, M., Vitacolonna, V.: Natural tangent dynamics with recurrent biorthonormalizations: a geometric computational approach to dynamical systems exhibiting slow manifolds and periodic/chaotic limit sets. Physica D 213, 121–146 (2006)

    Google Scholar 

  • Bell, N., Heard, D.E., Pilling, M.J., Tomlin, A.S.: Atmospheric lifetime as a probe of radical chemistry in the boundary layer. Atmos. Environ. 37, 2193–2205 (2003)

    CAS  Google Scholar 

  • Berkenbosch, A.C., Kaasschieter, E.F., Klein, R.: Detonation capturing for stiff combustion chemistry. Combust. Theory Model. 2, 313–348 (1998)

    CAS  Google Scholar 

  • Berzins, M., Ware, J.M.: Solving convection and convection-reaction problems using the method of lines. Appl. Numer. Math. 20, 83–99 (1996)

    Google Scholar 

  • Blasenbrey, T.: Entwicklung und Implementierung automatisch reduzierter Reaktionsmechanismen für die Verbrennung von Kohlenwasserstoffen. Stuttgart University (2000)

    Google Scholar 

  • Bongers, H., Van Oijen, J.A., De Goey, L.P.H.: Intrinsic low-dimensional manifold method extended with diffusion. Proc. Combust. Inst. 29, 1371–1378 (2002)

    CAS  Google Scholar 

  • Büki, A., Perger, T., Turányi, T., Maas, U.: Repro-modelling based generation of intrinsic low-dimensional manifolds. J. Math. Chem. 31, 345–362 (2002)

    Google Scholar 

  • Burden, R.L., Faires, J.D.: Numerical Analysis, 5th edn. Prindle, Weber and Schmidt, Boston (1993)

    Google Scholar 

  • Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11, 839–862 (2007)

    CAS  Google Scholar 

  • Bykov, V., Maas, U.: Problem adapted reduced models based on reaction-diffusion manifolds (REDIMs). Proc. Combust. Inst. 32, 561–568 (2009)

    CAS  Google Scholar 

  • Chen, C.C., Csikász-Nagy, A., Győrffy, B., Val, J., Novák, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391 (2000)

    CAS  Google Scholar 

  • Daescu, D., Sandu, A., Carmichael, G.R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part II—Validation and numerical experiments. Atmos. Environ. 37, 5097–5114 (2003)

    CAS  Google Scholar 

  • Damian, V., Sandu, A., Damian, M., Potra, F., Carmichael, G.R.: The kinetic PreProcessor KPP—a software environment for solving chemical kinetics. Comp. Chem. Eng. 26, 1567–1579 (2002)

    CAS  Google Scholar 

  • Davis, M.J.: Low-dimensional manifolds in reaction−diffusion equations. 1. Fundamental aspects. J. Phys. Chem. A 110, 5235–5256 (2006a)

    CAS  Google Scholar 

  • Davis, M.J.: Low-dimensional manifolds in reaction−diffusion equations. 2. Numerical analysis and method development. J. Phys. Chem. A 110, 5257–5272 (2006b)

    CAS  Google Scholar 

  • Davis, M.J., Tomlin, A.S.: Spatial dynamics of steady flames 1. Phase space structure and the dynamics of individual trajectories. J. Phys. Chem. A 112, 7768–7783 (2008a)

    CAS  Google Scholar 

  • Davis, M.J., Tomlin, A.S.: Spatial dynamics of steady flames 2. Low-dimensional manifolds and the role of transport processes. J. Phys. Chem. A 112, 7784–7805 (2008b)

    CAS  Google Scholar 

  • Di Carlo, P., Brune, W.H., Martinez, M., Harder, H., Lesher, R., Ren, X.R., Thornberry, T., Carroll, M.A., Young, V., Shepson, P.B., Riemer, D., Apel, E., Campbell, C.: Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 304, 722–725 (2004)

    Google Scholar 

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations 31, 53–98 (1979)

    Google Scholar 

  • Fotache, C.G., Kreutz, T.G., Law, C.K.: Ignition of counterflowing methane versus heated air under reduced and elevated pressures. Combust. Flame 108, 442–470 (1997)

    CAS  Google Scholar 

  • García-Ybarra, P.L., Treviño, C.: Asymptotic analysis of the boundary layer H2 ignition by a hot flat plate with thermal diffusion. Combust. Flame 96, 293–303 (1994)

    Google Scholar 

  • Goussis, D.A.: On the construction and use of reduced chemical kinetic mechanisms produced on the basis of given algebraic relations. J. Comput. Phys. 128, 261–273 (1996)

    CAS  Google Scholar 

  • Goussis, D.A., Lam, S.H.: A study of homogeneous methanol oxidation kinetics using CSP. Proc. Combust. Inst. 24, 113–120 (1992)

    Google Scholar 

  • Goussis, D.A., Najm, H.N.: Model reduction and physical understanding of slowly oscillating processes: the circadian cycle. SIAM Multiscale Model. Simul. 5, 1297–1332 (2006)

    Google Scholar 

  • Goussis, D.A., Skevis, G.: Nitrogen chemistry controlling steps in methane-air premixed flames. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 650–653. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Goussis, D.A., Valorani, M., Creta, F., Najm, H.N.: In: Bathe, K. (ed.) Computational Fluid and Solid Mechanics, vol. 2. Elsevier, Amsterdam, pp. 1951–1954 (2003)

    Google Scholar 

  • Goussis, D.A., Skevis, G., Mastorakos, E.: Transport-chemistry interactions in laminar premixed hydrogen-air flames near flammability limits. Proceedings of ECM (2005a)

    Google Scholar 

  • Goussis, D.A., Valorani, M., Creta, F., Najm, H.N.: Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems. Prog. Comput. Fluid Dyn. 5, 316–326 (2005b)

    CAS  Google Scholar 

  • Gupta, S., Im, H.G., Valorani, M.: Classification of ignition regimes in HCCI combustion using computational singular perturbation. Proc. Combust. Inst. 33, 2991–2999 (2011)

    CAS  Google Scholar 

  • Hadjinicolaou, M., Goussis, D.A.: Asymptotic solution of stiff PDEs with the CSP method: the reaction diffusion equation. SIAM J. Sci. Comput. 20, 781–810 (1998)

    Google Scholar 

  • Herbinet, O., Pitz, W., Westbrook, C.K.: Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust. Flame 157, 893–908 (2010)

    CAS  Google Scholar 

  • Hesstvedt, E., Hov, O., Isaksen, I.S.A.: Quasi-steady-state approximations in air-pollution modeling—comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kinet. 10, 971–994 (1978)

    CAS  Google Scholar 

  • Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    Google Scholar 

  • Ingham, T., Goddard, A., Whalley, L.K., Furneaux, K.L., Edwards, P.M., Seal, C.P., Self, D.E., Johnson, G.P., Read, K.A., Lee, J.D., Heard, D.E.: A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere. Atmos. Meas. Tech. 2, 465–477 (2009)

    CAS  Google Scholar 

  • Klonowski, W.: Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18, 73–87 (1983)

    CAS  Google Scholar 

  • Knio, O.M., Najm, H.N., Wyckoff, P.S.: A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation. J. Comput. Phys. 154, 428–467 (1999)

    CAS  Google Scholar 

  • Kourdis, P.D., Goussis, D.A.: Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillations. Math. Biosci. 243, 190–214 (2013)

    CAS  Google Scholar 

  • Kourdis, P.D., Steuer, R., Goussis, D.A.: Physical understanding of complex multiscale biochemical models via algorithmic simplification: glycolysis in Saccharomyces cerevisiae. Physica D 239, 1798–1817 (2010)

    CAS  Google Scholar 

  • Kovacs, T.A., Brune, W.H.: Total OH loss rate measurement. J. Atmos. Chem. 39, 105–122 (2001)

    CAS  Google Scholar 

  • KPP: Kinetic Preprocessor. http://people.cs.vt.edu/~asandu/Software/Kpp/

  • Kremling, A., Fischer, S., Sauter, T., Bettenbrock, K., Gilles, E.D.: Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. Biosystems 73, 57–71 (2004)

    CAS  Google Scholar 

  • Lam, S.H.: Using CSP to understand complex chemical kinetics. Combust. Sci. Technol. 89, 375–404 (1993)

    CAS  Google Scholar 

  • Lam, S.H.: Reduced chemistry-diffusion coupling. Combust. Sci. Technol. 179, 767–786 (2006)

    Google Scholar 

  • Lam, S.H.: Model reductions with special CSP data. Combust. Flame 160, 2707–2711 (2013)

    CAS  Google Scholar 

  • Lam, S.H., Goussis, D.A.: Understanding complex chemical kinetics with computational singular perturbation. Proc. Combust. Inst. 22, 931–941 (1988)

    Google Scholar 

  • Lam, S.H., Goussis, D.A.: Conventional asymptotics and computational singular perturbation for simplified kinetics modeling. In: Smooke, M.O. (ed.) Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Springer Lecture Notes, vol. 384, pp. 227–242. Springer, Berlin (1991)

    Google Scholar 

  • Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994)

    CAS  Google Scholar 

  • Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol. 60, 387–450 (2010)

    Google Scholar 

  • Lee, J.C., Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M., Goussis, D.: On chain branching and its role in homogeneous ignition and premixed flame propagation. In: Bathe, K. (ed.) Computational Fluid and Solid Mechanics, pp. 717–720. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Lee, J.C., Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M., Goussis, D.: A CSP and tabulation-based adaptive chemistry model. Combust. Theory Model. 11, 73–102 (2007)

    CAS  Google Scholar 

  • Lee, J.D., Young, J.C., Read, K.A., Hamilton, J.F., Hopkins, J.R., Lewis, A.C., Bandy, B.J., Davey, J., Edwards, P., Ingham, T., Self, D.E., Smith, S.C., Pilling, M.J., Heard, D.E.: Measurement and calculation of OH reactivity at a United Kingdom coastal site. J. Atmos. Chem. 64, 53–76 (2009)

    CAS  Google Scholar 

  • Logist, F., Saucez, P., Van Impe, J., Wouwer, A.V.: Simulation of (bio)chemical processes with distributed parameters using Matlab (R). Chem. Eng. J. 155, 603–616 (2009)

    CAS  Google Scholar 

  • Løvås, T., Amneus, P., Mauss, F., Mastorakos, E.: Comparison of automatic reduction procedures for ignition chemistry. Proc. Combust. Inst. 29, 1387–1393 (2002)

    Google Scholar 

  • Løvås, T., Mastorakos, E., Goussis, D.A.: Reduction of the RACM scheme using computational singular perturbation analysis. J. Geophys. Res. Atmos. 111(D13302) (2006)

    Google Scholar 

  • Lovrics, A., Csikász-Nagy, A., Zsély, I.G., Zádor, J., Turányi, T., Novák, B.: Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinform. 7, 494 (2006)

    Google Scholar 

  • Lu, T., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154, 761–774 (2008a)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: Strategies for mechanism reduction for large hydrocarbons: n-heptane. Combust. Flame 154, 153–163 (2008b)

    CAS  Google Scholar 

  • Lu, T., Ju, Y., Law, C.K.: Complex CSP for chemistry reduction and analysis. Combust. Flame 126, 1445–1455 (2001)

    CAS  Google Scholar 

  • Lu, T.F., Yoo, C.S., Chen, J.H., Law, C.K.: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis. J. Fluid Mech. 652, 45–64 (2010)

    CAS  Google Scholar 

  • Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., Lu, T.F.: Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159, 265–274 (2012c)

    CAS  Google Scholar 

  • Maas, U.: Coupling of chemical reaction with flow and molecular transport. Appl. Math. 40, 249–266 (1995)

    Google Scholar 

  • Maas, U.: Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput. Vis. Sci. 1, 69–81 (1998)

    Google Scholar 

  • Maas, U.: Mathematical modeling of the coupling of chemical kinetics with flow and molecular transport. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II, pp. 26–56. Springer, Berlin (1999)

    Google Scholar 

  • Maas, U., Bykov, V.: The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proc. Combust. Inst. 33, 1253–1259 (2011)

    CAS  Google Scholar 

  • Maas, U., Pope, S.B.: Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 24, 103–112 (1992a)

    Google Scholar 

  • Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992b)

    CAS  Google Scholar 

  • Maas, U., Pope, S.B.: Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 25, 1349–1356 (1994)

    Google Scholar 

  • Maas, U., Thévenin, D.: Correlation analysis of direct numerical simulation data of turbulent non-premixed flames. Proc. Combust. Inst. 27, 1183–1189 (1998)

    Google Scholar 

  • Maas, U., Warnatz, J.: Ignition processes in hydrogen-oxigen mixtures. Combust. Flame 74, 53–69 (1988)

    CAS  Google Scholar 

  • Macken, K.V., Sidebottom, H.W.: The reactions of methyl radicals with chloromethanes. Int. J. Chem. Kinet. 11, 511–527 (1979)

    CAS  Google Scholar 

  • Mao, J., Ren, X., Brune, W.H., Olson, J.R., Crawford, J.H., Fried, A., Huey, L.G., Cohen, R.C., Heikes, B., Singh, H.B., Blake, D.R., Sachse, G.W., Diskin, G.S., Hall, S.R., Shetter, R.E.: Airborne measurement of OH reactivity during INTEX-B. Atmos. Chem. Phys. 9, 163–173 (2009)

    CAS  Google Scholar 

  • Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A.: An algorithm for the construction of global reduced mechanisms with CSP data. Combust. Flame 117, 685–708 (1999a)

    CAS  Google Scholar 

  • Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A.: Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust. Theory Model. 3, 233–257 (1999b)

    CAS  Google Scholar 

  • Mengers, J.D., Powers, J.M.: One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12, 560–595 (2013)

    Google Scholar 

  • Mittal, G., Chaos, M., Sung, C.J., Dryer, F.L.: Dimethyl ether autoignition in a rapid compression machine: experiments and chemical kinetic modeling. Fuel Process. Technol. 89, 1244–1254 (2008)

    CAS  Google Scholar 

  • Mora-Ramirez, M.A., Velasco, R.M.: Reduction of CB05 mechanism according to the CSP method. Atmos. Environ. 45, 235–243 (2011)

    CAS  Google Scholar 

  • Nagy, T., Turányi, T.: Relaxation of concentration perturbation in chemical kinetic systems. Reac. Kinet. Catal. Lett. 96, 269–278 (2009)

    CAS  Google Scholar 

  • Neophytou, M.K., Goussis, D.A., van Loon, M., Mastorakos, E.: Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis. Atmos. Environ. 38, 3661–3673 (2004)

    CAS  Google Scholar 

  • Nicolini, P., Frezzato, D.: Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law. J. Chem. Phys. 138(234101) (2013a)

    Google Scholar 

  • Nicolini, P., Frezzato, D.: Features in chemical kinetics. II. A self-emerging definition of slow manifolds. J. Chem. Phys. 138(234102) (2013b)

    Google Scholar 

  • Pilling, M.J., Seakins, P.W.: Reaction Kinetics. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Pontryagin, L.S.: Ordinary Differential Equations. Elsevier, Amsterdam (1962)

    Google Scholar 

  • Prager, J., Najm, H.N., Valorani, M., Goussis, D.A.: Skeletal mechanism generation with CSP and validation for premixed n-heptane flames. Proc. Combust. Inst. 32, 509–517 (2009)

    CAS  Google Scholar 

  • Prasolov, V.V.: Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, vol. 134. American Mathematical Society, Cambridge (1994)

    Google Scholar 

  • Prüfert, U., Hunger, F., Hasse, C.: The analysis of chemical time scales in a partial oxidation flame. Combust. Flame 161, 416–426 (2014)

    Google Scholar 

  • Ren, Z., Pope, S.B.: The use of slow manifolds in reactive flows. Combust. Flame 147, 243–261 (2006)

    CAS  Google Scholar 

  • Ren, Z.Y., Pope, S.B.: Second-order splitting schemes for a class of reactive systems. J. Comput. Phys. 227, 8165–8176 (2008)

    CAS  Google Scholar 

  • Roussel, M.R., Fraser, S.J.: Accurate steady-state approximation: implications for kinetics experiments and mechanism. J. Chem. Phys. 94, 7106–7113 (1991)

    CAS  Google Scholar 

  • Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A.: Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ. 31, 3459–3472 (1997a)

    CAS  Google Scholar 

  • Sandu, A., Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub, D., Seinfeld, J.H.: Benchmarking stiff ODE solvers for atmospheric chemistry problems I. implicit vs. explicit. Atmos. Environ. 31, 3151–3166 (1997b)

    CAS  Google Scholar 

  • Sandu, A., Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity analysis ofchemical kinetic systems with KPP: Part I – theory and software tools. Atmos. Environ. 37, 5083–5096 (2003)

    CAS  Google Scholar 

  • Schwer, D.A., Lu, P., Green, W.H., Semiao, V.: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry. Combust. Theory Model. 7, 383–399 (2003)

    CAS  Google Scholar 

  • Scott, S.K.: Chemical Chaos. International Series of Monographs on Chemistry, vol. 24. Clarendon Press, Oxford (1990)

    Google Scholar 

  • Singer, M.A., Pope, S.B., Najm, H.N.: Operator-splitting with ISAT to model reacting flow with detailed chemistry. Combust. Theory Model. 10, 199–217 (2006)

    CAS  Google Scholar 

  • Singh, S., Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive systems. J. Chem. Phys. 117, 1482–1496 (2002)

    CAS  Google Scholar 

  • Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Google Scholar 

  • Tomlin, A., Berzins, M., Ware, J., Smith, J., Pilling, M.J.: On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources. Atmos. Environ. 31, 2945–2959 (1997)

    CAS  Google Scholar 

  • Tomlin, A.S., Whitehouse, L., Lowe, R., Pilling, M.J.: Low-dimensional manifolds in tropospheric chemical systems. Faraday Discuss. 120, 125–146 (2001)

    CAS  Google Scholar 

  • Treviño, C.: Ignition phenomena in H2/O2 mixtures. Prog. Astronaut. Aeronautics 131, 19–43 (1991)

    Google Scholar 

  • Treviño, C., Liñan, A.: Mixing layer ignition of hydrogen. Combust. Flame 103, 129–141 (1995)

    Google Scholar 

  • Treviño, C., Mendez, F.: Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78, 197–216 (1991)

    Google Scholar 

  • Treviño, C., Mendez, F.: Reduced kinetic mechanism for methane ignition. Proc. Combust. Inst. 24, 121–127 (1992)

    Google Scholar 

  • Treviño, C., Solorio, F.: Asymptotic analysis of high temperature ignition of CO/H2/O2 mixtures. Combust. Flame 86, 285–295 (1991)

    Google Scholar 

  • Turányi, T., Tomlin, A.S., Pilling, M.J.: On the error of the quasi-steady-state approximation. J. Phys. Chem. 97, 163–172 (1993)

    Google Scholar 

  • Valorani, M., Goussis, D.A.: Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys. 169, 44–79 (2001)

    Google Scholar 

  • Valorani, M., Najm, H.N., Goussis, D.A.: CSP analysis of a transient flame-vortex interaction: time scales and manifolds. Combust. Flame 134, 35–53 (2003)

    CAS  Google Scholar 

  • Valorani, M., Creta, F., Goussis, D.A., Najm, H.N., Lee, J.C.: Chemical kinetics mechanism simplification via CSP. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 900–904. Elsevier, Amsterdam (2005a)

    Google Scholar 

  • Valorani, M., Goussis, D.A., Creta, F., Najm, H.N.: Higher order corrections in the approximation of low dimensional manifolds and the construction of simplified problems with the CSP method. J. Comput. Phys. 209, 754–786 (2005b)

    Google Scholar 

  • Valorani, M., Creta, F., Goussis, D., Lee, J., Najm, H.: An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust. Flame 146, 29–51 (2006)

    CAS  Google Scholar 

  • Valorani, M., Creta, F., Donato, F., Najm, H.N., Goussis, D.A.: Skeletal mechanism generation and analysis for n-heptane with CSP. Proc. Combust. Inst. 31, 483–490 (2007)

    Google Scholar 

  • Van Oijen, J.A., Bastlaans, R.J.M., De Goey, L.P.H.: Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst. 31, 1377–1384 (2007)

    Google Scholar 

  • Westbrook, C.K., Naik, C.V., Herbinet, O., Pitz, W.J., Mehl, M., Sarathy, S.M., Curran, H.J.: Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust. Flame 158, 742–755 (2011)

    CAS  Google Scholar 

  • Yang, B., Pope, S.B.: An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112, 16–32 (1998)

    CAS  Google Scholar 

  • Yannacopoulos, A.N., Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: The use of algebraic sets in the approximation of inertial manifolds and lumping in chemical kinetic systems. Physica D 83, 421–449 (1995)

    CAS  Google Scholar 

  • Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 59–91 (2004)

    CAS  Google Scholar 

  • Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 230, 5996–6009 (2011)

    CAS  Google Scholar 

  • Zhu, J., Zhang, Y.-T., Newman, S., Alber, M.: Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J. Sci. Comput. 40, 391–418 (2009)

    Google Scholar 

  • Zsély, I.G., Zádor, J., Turányi, T.: On the similarity of the sensitivity functions of methane combustion models. Combust. Theory Model. 9, 721–738 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turányi, T., Tomlin, A.S. (2014). Timescale Analysis. In: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44562-4_6

Download citation

Publish with us

Policies and ethics