Skip to main content

The Genomics of Colletotrichum

  • Chapter
  • First Online:
Genomics of Plant-Associated Fungi: Monocot Pathogens

Abstract

Members of the genus Colletotrichum cause anthracnose diseases on nearly every crop grown for food, fiber, and forage worldwide. Colletotrichum fungi display a broad range of lifestyles, including plant associations occupying a continuum from necrotrophy to intracellular hemibiotrophy (IH) to endophytism. There are at least three major variants of IH, differing in the duration of biotrophy and synchronization of the switch to necrotrophy. Comparative genomic analyses may uncover how these lifestyles evolved and their functional relationships, identify commonalities as potential conserved targets for control and management, and transform our current understanding of Colletotrichum taxonomy. The genome sequences of four species were recently published: C. graminicola; C. higginsianum; C. obiculare; and C. fructicola (reported as C. gloeosporioides). These species occupy distinct monophyletic lineages in the genus and represent three different lifestyles (two variants of IH, and necrotrophy). The Colletotrichum genomes are relatively large (58-88 Mb), and encode between 11,000 and 16,000 genes. They share little synteny, suggesting that large-scale genome rearrangements were common during the evolutionary history of the genus. Several gene families are expanded in Colletotrichum relative to other sequenced ascomycetes, including those encoding carbohydrate-active enzymes, secondary metabolism enzymes, secreted proteases, and putative secreted effectors. Analysis of the in planta transcriptomes of C. higginsianum, C. graminicola, and C. orbiculare suggested that appressoria and biotrophic intracellular hyphae function as platforms for the secretion of effectors and secondary metabolites to establish host compatibility, while hyphae developing after the switch to necrotrophy are primarily involved in secreting cell wall degrading enzymes and nutrient uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abang MM, Asiedu R, Hoffmann P, Wolf GA, Mignouna HD, Winter S (2006) Pathogenic and genetic variability among Colletotrichum gloeosporioides isolates from different yam hosts in the agroecological zones in Nigeria. J Phytopathol 154(1):51–61

    CAS  Google Scholar 

  • Adegbite AA, Amusa NA (2008). The major economic field diseases of cowpea in the humid agro-ecologies of South-western Nigeria. Afr J Biotechnol. 7(25):4706–4712

    Google Scholar 

  • Aguileta G, Hood ME, Refrégier G, Giraud T (2009) Genome evolution in plant pathogenic and symbiotic fungi. Adv Bot Res 49:151–193

    CAS  Google Scholar 

  • Aguileta G, Marthey S, Chiapello H, Lebrun M, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57:613–627

    CAS  PubMed  Google Scholar 

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8(11):1732–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ammar MI, El-Naggar MA (2011) Date palm (Phoenix dactylifera L.) fungal diseases in Najran, Saudi Arabia. Int J Plant Pathol 2(3):126–135

    Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Levis C (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco M, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P (2012) Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genom 13:314

    CAS  Google Scholar 

  • Arivudainambi US, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61(3):340–345

    CAS  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100(26):15649–15654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrus MF (1911) Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1(6):190–195

    Google Scholar 

  • Bastmeyer M, Deising HB, Bechinger C (2002) Force exertion in fungal infection. Annu Rev Biophys Biomol Struct 31(1):321–341

    CAS  PubMed  Google Scholar 

  • Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285(5435):1896–1899

    CAS  PubMed  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134(2):890–892

    CAS  PubMed  Google Scholar 

  • Beirn LA, Clarke BB, Crouch JA (2013) Influence of host and geographic locale on the distribution of Colletotrichum cereale lineages. PLoS ONE 9(5):e97706. doi: 10.1371/journal.pone.0097706

  • Bergstrom GC, Nicholson RL (1999) The biology of corn anthracnose: knowledge to exploit for improved management. Plant Dis 83(7):596–608

    CAS  Google Scholar 

  • Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y (2013) Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot Cell 12(1):2–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, O’Connell. R (2009) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60(4):602–613

    CAS  PubMed  Google Scholar 

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. The Plant Cell Online 16(9):2499–2513

    Google Scholar 

  • Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism—from genomics to biochemistry. Fungal Genet Biol 45:S88–S93

    PubMed  Google Scholar 

  • Boyette CD, Jackson MA, Bryson CT, Hoagland RE, Connick WJ Jr, Daigle DJ (2007) Sesbania exaltata biocontrol with Colletotrichum truncatum microsclerotia formulated in ‘Pesta’granules. Biocontrol 52(3):413–426

    Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G-C to A–T mutations in Neurospora. Science 244:1571–1575

    CAS  PubMed  Google Scholar 

  • Cannon P, Buddie A, Bridge P, de Neergaard E, Lübeck M, Askar M (2012a) Lectera, a new genus of the Plectosphaerellaceae for the legume pathogen Volutella colletotrichoides. MycoKeys 3:23–36

    Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012b) Colletotrichum–current status and future directions. Stud Mycol 73(1):181–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94(2):210–220

    PubMed  Google Scholar 

  • Cano J, Guarro J, Gené J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. J Clin Microbiol 42(6):2450–2454

    PubMed Central  PubMed  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomyctes. Mycologia 91:553–556

    CAS  Google Scholar 

  • Chaw SM, Chang CC, Chen HL, Li WH (2004) Dating the monocot-dicot divergence and the origin of core Eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    CAS  PubMed  Google Scholar 

  • Chen C, Dickman MB (2002) Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot Cell 1(4):626–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Dickman MB (2004) Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol Microbiol 51(5):1493–1507

    CAS  PubMed  Google Scholar 

  • Chilton SJP, Lucas GB, Edgerton CW (1945) Genetics of Glomerella. III. Crosses with a conidial strain. Am J Bot 32:549–554

    Google Scholar 

  • Chilton SJP, Wheeler HE (1949a) Genetics of Glomerella. VI. Linkage. Am J Bot 36:270–273

    Google Scholar 

  • Chilton SJP, Wheeler HE (1949b) Genetics of Glomerella. VII. Mutation and segregation in plus cultures. Am J Bot 36:717–721

    Google Scholar 

  • Choi J, Park J, Kim D, Jung K, Kang S, Lee YH (2010) Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genom 11(1):105

    Google Scholar 

  • Chona BL (1980) Red rot of sugarcane and sugar industry—a review. Indian Phytopathol 33(2):191–207

    Google Scholar 

  • Chongo G, Gossen BD, Bernier CC (2002) Infection by Colletotrichum truncatum in resistant and susceptible lentil genotypes. Can J Plant Pathol 24(1):81–85

    Google Scholar 

  • Chuma I, Tosa Y, Taga M, Nakayashiki H, Mayama S (2003) Meiotic behavior of a supernumerary chromosome in Magnaporthe oryzae. Curr Genet 43(3):191–198

    CAS  PubMed  Google Scholar 

  • Chung KR, Shilts T, Ertürk Ü, Timmer LW, Ueng PP (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226(1):23–30

    CAS  PubMed  Google Scholar 

  • Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation in filamentous ascomycetes. Fungal Genet Biol 48:306–326

    PubMed  Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, VanEtten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618

    PubMed Central  PubMed  Google Scholar 

  • Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Böhnert HU (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection specific gene cluster involved in secondary metabolism. New Phytol 179(1):196–208

    CAS  PubMed  Google Scholar 

  • Cortese LM, Bonos SA (2012) Bioenergy traits of ten switchgrass populations grown in the Northeastern/Mid-Atlantic USA. Bioenergy Res 6:580–590

    Google Scholar 

  • Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Curr Genet 33(5):311–319

    CAS  PubMed  Google Scholar 

  • Crouch JA (2013) Colletotrichum caudatum is a species complex. IMA Fungus (in press)

    Google Scholar 

  • Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB (2009a) Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycol Res 113(12):1411–1421

    CAS  PubMed  Google Scholar 

  • Crouch JA, Beirn LA, Ismaiel A, Oudemans PV, Clarke BB, Polashock JJ (2013) Phylogenomic RAD-Seq analysis of plant pathogenic Colletotrichum fungi. BMC Genomics (in review)

    Google Scholar 

  • Crouch JA, Beirn LA (2009) Anthracnose of cereals and grasses. Fungal Divers 39:19

    Google Scholar 

  • Crouch JA, Clarke BB, Hillman BI (2006) Unraveling evolutionary relationships among the divergent lineages of Colletotrichum causing anthracnose disease in turfgrass and corn. Phytopathology 96(1):46–60

    CAS  PubMed  Google Scholar 

  • Crouch JA, Clarke BB, White JF, Hillman BI (2009b) Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses. Mycologia 101(5):717–732

    PubMed  Google Scholar 

  • Crouch JA, Glasheen BM, Giunta MA, Clarke BB, Hillman BI (2008) The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: Reconciling sex, recombination and homoplasy in an ‘‘asexual” pathogen. Fungal Genet Biol 45(3):190–206

    CAS  PubMed  Google Scholar 

  • Crouch JA, Tomaso-Peterson M (2012) Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloa, a new fungal species closely related to Colletotrichum sublineola. Mycologia 104(5):1085–1096

    PubMed  Google Scholar 

  • Crouch JA, Tredway LP, Clarke BB, Hillman BI (2009c) Phylogenetic and population genetic divergence correspond with habitat for the pathogen Colletotrichum cereale and allied taxa across diverse grass communities. Mol Ecol 18(1):123–135

    CAS  PubMed  Google Scholar 

  • Cuomo CA, Birren BW (2010) The fungal genome initiative and lessons learned from genome sequencing. Methods Enzymol 470:833–855

    CAS  PubMed  Google Scholar 

  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843):1400–1402

    CAS  PubMed  Google Scholar 

  • Dahlberg J, Berenji J, Sikora V, Latkovic D (2011) Assessing sorghum (Sorghum bicolor (L) Moench) germplasm for new traits: food, fuels & unique uses. Maydica 56(1750):85–92

    Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012a) The Colletotrichum acutatum species complex. Stud Mycol 73(1):37–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Crous PW (2012b) The Colletotrichum boninense species complex. Stud Mycol 73(1):1–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45

    Google Scholar 

  • Daub ME (1982) Cercosporin, a photosensitizing toxin from Cercospora species. Phytopathology 72(4):370–374

    CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond Kosack KE, Di Pietro A, Spanu PD, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430

    PubMed  Google Scholar 

  • de Jonge R, Thomma BP (2009) Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17(4):151–157

    PubMed  Google Scholar 

  • Dey P, Banerjee J, Maiti MK (2011) Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823

    CAS  PubMed  Google Scholar 

  • Dickman MB, Yarden O (1999) Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genet Biol 26(2):99–117

    CAS  PubMed  Google Scholar 

  • Dillard HR, Cobb AC (1998) Survival of Colletotrichum coccodes in infected tomato tissue and in soil. Plant Dis 82(2):235–238

    Google Scholar 

  • Dingley JM, Gilmour JW (1972) Colletotrichum acutatum Simmds. f. sp. pinea associated with “terminal crook” disease of Pinus spp. NZ J Forest Sci 2(2):192–201

    Google Scholar 

  • Driver CH, Wheeler HE (1955) A sexual hormone in Glomerella. Mycologia 47(3):311–316

    Google Scholar 

  • Du Y, Chu H, Wang M, Chu IK, Lo C (2010) Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J Exp Bot 61(4):983–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia 97(3):641–658

    CAS  PubMed  Google Scholar 

  • Edgerton CW, Chilton SJP, Lucas GB (1945) Genetics of Glomerella. II. Fertilization between strains. Am J Bot 32:115–118

    Google Scholar 

  • Engelsdorf T, Horst RJ, Pröls R, Pröschel M, Dietz F, Hückelhoven R, Voll LM (2013) Reduced carbohydrate availability enhances susceptibility of Arabidopsis towards Colletotrichum higginsianum. Plant Physiol 162(1):225–38

    Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Nürnberger T (2002) NPP1, a Phytophthora associated trigger of plant defense in parsley and Arabidopsis. Plant J 32(3):375–390

    CAS  PubMed  Google Scholar 

  • Femenía-Ríos M, García-Pajón CM, Hernández-Galán R, Macías-Sánchez AJ, Collado IG (2006) Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorg Med Chem Lett 16(22):5836–5839

    PubMed  Google Scholar 

  • Finlay AR, Brown AE (1993) The relative importance of Colletotrichum musae as a crown rot pathogen on Windward Island bananas. Plant Pathol 42(1):67–74

    Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    PubMed Central  PubMed  Google Scholar 

  • Forgey WM, Blanco MH, Loegering WQ (1978) Differences in pathological capabilities and host specificity of Colletotrichum graminicola on Zea mays (maize). Plant Dis Report 62:573–576

    Google Scholar 

  • Freeman S, Horowitz S, Sharon A (2001) Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91(10):986–992

    CAS  PubMed  Google Scholar 

  • Freeman S, Shalev Z, Katan J (2002) Survival in soil of Colletotrichum acutatum and C. gloeosporioides pathogenic on strawberry. Plant Dis 86(9):965–970

    Google Scholar 

  • Frey TJ, Weldekidan T, Colbert T, Wolters PJCC, Hawk JA (2011) Fitness evaluation of a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. using near-isogenic maize hybrids. Crop Sci 51(4):1551–1563

    Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20(9):417–423

    CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197(4):1236–1249

    CAS  PubMed  Google Scholar 

  • García E, Alonso Á, Platas G, Sacristán S (2013) The endophytic mycobiota of Arabidopsis thaliana. Fungal Divers 60(1):1–19

    Google Scholar 

  • García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20(4):426–431

    PubMed  Google Scholar 

  • García-Serrano M, Laguna EA, Simpson J, Rodríguez-Guerra R (2008) Analysis of the MATI-2-1 gene of Colletotrichum lindemuthianum. Mycoscience 49(5):312--317

    Google Scholar 

  • Gardner MW (1918) Anthracnose of cucurbits (No. 727). US Dept. of Agriculture

    Google Scholar 

  • Gawehns F, Cornelissen BJC, Takken FLW (2013) The potential of effector-target genes in breeding for plant innate immunity. Microb Biotechnol 6:223–229

    PubMed Central  PubMed  Google Scholar 

  • Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20(14):3001–3013

    PubMed  Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JC, Sévignac M, Cohen S, Gepts P, Dron M (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microbe Interact 12(9):774–784

    CAS  PubMed  Google Scholar 

  • Gengenbach BG, Miller RJ, Koeppe DE, Arntzen CJ (1973) The effect of toxin from Helminthosporium maydis (race T) on isolated corn mitochondria: swelling. Can J Bot 51(11):2119–2125

    CAS  Google Scholar 

  • Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67(16):1800–1807

    CAS  PubMed  Google Scholar 

  • Goddard R, Hatton IK, Howard JA, MacMillan J, Gilmore CJ (1976) X-Ray crystal and molecular structure of acetylcolletotrichin (colletotrichin), a metabolite of Colletotrichum capsici. J Chem Soc, Chem Commun 11:408–408

    Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    PubMed  Google Scholar 

  • Green KR, Simons SA (1994) ‘Dead skin’on yams (Dioscorea alata) caused by Colletotrichum gloeosporioides. Plant Pathol 43(6):1062–1065

    Google Scholar 

  • Ha YS, Memmott SD, Dickman MB (2003) Functional analysis of Ras in Colletotrichum trifolii. FEMS Microbiol Lett 226(2):315–321

    CAS  PubMed  Google Scholar 

  • Hartman JC, Nippert JB, Orozco RA, Springer CJ (2011) Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the Central Great Plains, USA. Biomass Bioenergy 35(8):3415–3421

    Google Scholar 

  • Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161(1):59–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • He C, Nourse JP, Irwin JAG, Manners JM, Kelemu S (1996) CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides. Mol Gen Genet MGG 252:320–331

    CAS  Google Scholar 

  • Horbach R, Graf A, Weihmann F, Antelo L, Mathea S, Liermann JC, Deising HB (2009) Sfp-type 4′-phosphopantetheinyl transferase is indispensable for fungal pathogenicity. The Plant Cell Online 21(10):3379–3396

    CAS  Google Scholar 

  • Horie H, Sugata S, Abe Z (1988) Studies on anthracnose of komatsuna, Brassica rapa. Bull Tokyo Metrop Agr Exp Sta 21:189–237

    Google Scholar 

  • Howard CM, Albregts EE (1983) Black leaf spot phase of strawberry anthracnose caused by Colletotrichum gloeosporioides (= C. fragariae). Plant Dis 67(10):1144–1146

    Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    CAS  PubMed  Google Scholar 

  • Hsiang T, Goodwin PH (2001) Ribosomal DNA sequence comparisons of Colletotrichum graminicola from turfgrasses and other hosts. Eur J Plant Pathol 107(6):593–599

    CAS  Google Scholar 

  • Hua-Van A, Daviere J-M, Kaper F, Langin T, Daboussi M-J (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37:339–347

    CAS  PubMed  Google Scholar 

  • Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Zhang JZ (2009) Colletotrichum—names in current use. Fungal Divers 39:147

    Google Scholar 

  • Jaramillo VDA, Vargas WA, Sukno SA, Thon MR (2013) Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum. PLoS ONE 8(3):e59078

    Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Li W (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101

    PubMed  Google Scholar 

  • Kanneganti TD, Huitema E, Cakir C, Kamoun S (2006) Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin. Mol Plant Microbe Interact 19(8):854–863

    CAS  PubMed  Google Scholar 

  • Kelkar YD, Ochman H (2012) Causes and consequences of genome expansion in fungi. Genome Biol Evol 4(1):13–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YK, Kawano T, Li D, Kolattukudy PE (2000) A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. The Plant Cell Online 12(8):1331–1343

    CAS  Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1977) Assignment of 13C-nmr spectrum and biosynthesis of colletotrichin. Tetrahedron Lett 18(52):4615–4618

    Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1978) The biosynthesis of colletotrichins isolated from Colletotrichum nicotianae. Tetrahedron Lett 19(34):3115–3118

    Google Scholar 

  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels, 4(4):1--14

    Google Scholar 

  • Kleemann J, Takahara H, Stüber K, O’Connell R (2008) Identification of soluble secreted proteins from appressoria of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology 154(4):1204–1217

    CAS  PubMed  Google Scholar 

  • Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8(4):e1002643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo, Y (2012) Appressorium function in Colletotrichum orbiculare and prospect for genome based analysis. In: Pérez-Martín J, Di Pietro A (eds) Morphogenesis and pathogenicity in fungi, vol.22. Springer, Heidelberg, pp 115–131

    Google Scholar 

  • Kubo Y, Nakamura H, Kobayashi K, Okuno T, Furusawa I (1991) Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 4:440–445

    CAS  Google Scholar 

  • Kubo Y, Furusawa I (1991) Melanin biosynthesis: a prerequisite for successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants. Plenum Press, New York, pp 205–218

    Google Scholar 

  • Kubo Y, Takano Y (2013) Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J Gen Plant Pathol. doi:10.1007/s10327-013-0451-9

    Google Scholar 

  • Kuc J (1972) Phytoalexins. Annu Rev Phytopathol 10:207–232

    CAS  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2007) Localized hemibiotrophy in Colletotrichum: cytological and molecular taxonomic similarities among C. destructivum, C. linicola and C. truncatum. Plant Pathol 56(3):437–447

    CAS  Google Scholar 

  • Lees AK, Hilton AJ (2003) Black dot (Colletotrichum coccodes): an increasingly important disease of potato. Plant Pathol 52(1):3–12

    Google Scholar 

  • Legard DE (2000) Colletotrichum diseases of strawberry in Florida. In: Prusky D, Freeman S, Dickman M (eds) Colletotrichum: host specificity, pathogy, and host-pathogen interaction. APS Press, St. Paul MN, pp 292–299

    Google Scholar 

  • Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16(1):76–86

    CAS  Google Scholar 

  • Liao CY, Chen MY, Chen YK, Kuo KC, Chung KR, Lee MH (2012) Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol 61(2):262–270

    Google Scholar 

  • Lin CL, Huang JW (2002) The occurrence of cruciferous vegetable anthracnose in Taiwan and identification of the pathogen. Plant Pathol Bull 11:173–178

    Google Scholar 

  • López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93(1):88–95

    PubMed  Google Scholar 

  • Lowe RG, Howlett BJ (2012) Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi. PLoS Pathog 8(3):e1002515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lubbe CM, Denman S, Cannon PF, Groenewald JE, Lamprecht SC, Crous PW (2004) Characterization of Colletotrichum species associated with diseases of Proteaceae. Mycologia 96(6):1268–1279

    PubMed  Google Scholar 

  • Lucas GB (1946) Genetics of Glomerella. IV. Nuclear phenomena in the ascus. Am J Bot 33:802–806

    Google Scholar 

  • Lucas GB, Chilton SJP, Edgerton CW (1944) Genetics of Glomerella. I. Studies on the behavior of certain strains. Am J Bot 31:233–239

    Google Scholar 

  • Ma LJ, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Sain D (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287):367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manire CA, Rhinehart HL, Sutton DA, Thompson EH, Rinaldi MG, Buck JD, Jacobson E (2002) Disseminated mycotic infection caused by Colletotrichum acutatum in a Kemp’s Ridley sea turtle (Lepidochelys kempi). J Clin Microbiol 40:4273–4280

    PubMed Central  PubMed  Google Scholar 

  • Marcelino J, Giordano R, Gouli S, Gouli V, Parker BL, Skinner M, Cesnik R (2008) Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 100(3):353–374

    Google Scholar 

  • Marcelino JA, Gouli S, Parker BL, Skinner M, Schwarzberg L, Giordano R (2009) Host plant associations of an entomopathogenic variety of the fungus, Collectotrichum acutatum, recovered from the elongate hemlock scale, Fiorinia externa. J Insect Sci 9(25):1--11

    Google Scholar 

  • Masel AM, He C, Poplawski AM, Irwin JA, Manners JM (1996) Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mol Plant Microbe Interact 9(5):339–348

    CAS  Google Scholar 

  • Matthews DE, Gregory P, Gracen VE (1979) Helminthosporium maydis race T toxin induces leakage of NAD + from T cytoplasm corn mitochondria. Plant Physiol 63(6):1149–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maynard DN, Hopkins DL (1999) Watermelon fruit disorders. HortTechnol 9(2):155–161

    Google Scholar 

  • Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’Barek S, Gohari AM, de Wit PJ (2011) Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 35(3):542–554

    CAS  PubMed  Google Scholar 

  • Melotto M, Balardin RS, Kelly JD (2000) Host-pathogen interaction and variability of Colletotrichum lindemuthianum. In: PruskyD, Freeman S, Dickman M (eds) Colletotrichum host specificity, pathology, host–pathogen interaction. APS press, St. Paul, MN, pp 346–361

    Google Scholar 

  • Melotto M, Kelly JD (2001) Fine mapping of the Co-4 locus of common bean reveals a resistance gene candidate, COK-4, that encodes for a protein kinase. Theor Appl Genet 103(4):508–517

    CAS  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7(8):352–356

    CAS  PubMed  Google Scholar 

  • Mendgen K, Hahn M, Diesing H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    CAS  PubMed  Google Scholar 

  • Mims CW, Vaillancourt LJ (2002) Ultrastructural characterization of infection and colonization of maize leaves by Colletotrichum graminicola, and by a C. graminicola pathogenicity mutant. Phytopathology 92(7):803–812

    CAS  PubMed  Google Scholar 

  • Moses E, Nash C, Strange RN, Bailey JA (1996) Colletotrichum gloeosporioides as the cause of stem tip dieback of cassava. Plant Pathol 45(5):864–871

    Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. The Plant Cell Online 21(4):1273–1290

    CAS  Google Scholar 

  • Moura-Costa PH, Kandasamy KI, Mantell SH (1993) Evaluation of in vitro screening methods for assessing anthracnose disease reactions in tropical yams (Dioscorea spp.). Tropical Agriculture- 70:147–147

    Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17(7):749–762

    CAS  PubMed  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J 60(2):218–226

    CAS  PubMed  Google Scholar 

  • Ni M, Feretzaki M, Sun S, Wang X, Heitman J (2011) Sex in Fungi. Annu Rev Genet 45:405–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé MT, Dumas B (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant Microbe Interact 17(3):272–282

    PubMed  Google Scholar 

  • O’Connell RJ, Pain NA, Hutchison KA, Jones GL, Green JR (1996) Ultrastructure and composition of the cell surfaces of infection structures formed by the fungal plant pathogen Colletotrichum lindemuthianum. J Microsc 181(2):204–212

    Google Scholar 

  • O’Connell RJ, Panstruga R (2006) Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171(4):699–718

    PubMed  Google Scholar 

  • O’Connell RJ, Perfect S, Hughes B, Carzaniga R, Bailey J, Green J (2000) Dissecting the cell biology of Colletotrichum infection processes. In: Prusky D, Freeman S, Dickman M (eds) Colletotrichum, host specificity, pathogenicity, and host-pathogen interaction. APS press, St. Paul, MN, pp 57–77

    Google Scholar 

  • O’Connell RJ, Ride JP (1990) Chemical detection and ultrastructural localization of chitin in cell walls of Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 37:39–53

    Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065. doi:10.1038/ng.2372

    PubMed  Google Scholar 

  • Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Zorner P (1995) Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotechnol Biochem 59(1):113

    CAS  PubMed  Google Scholar 

  • Okayama K, Tsujimoto A (1994) Occurrence of strawberry anthracnose caused by Glomerella cingulata (Stoneman) Spaulding et Schrenk and pathogenicity of the fungus. Ann Phytopathological Soc Jpn 60(5):617--623

    Google Scholar 

  • Olivieri F, Zanetti ME, Oliva CR, Covarrubias AA, Casalongué CA (2002) Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. Eur J Plant Pathol 108(1):63–72

    CAS  Google Scholar 

  • O’Quinn RP, Hoffmann JL, Boyd AS (2001) Colletotrichum species as emerging opportunistic fungal pathogens: A report of 3 cases of phaeohyphomycosis and review. J Am Acad Dermatol 45(1):56–61

    PubMed  Google Scholar 

  • Osono T (2007) Endophytic and epiphytic phyllosphere fungi of red-osier dogwood (Cornus stolonifera) in British Columbia. Mycoscience 48(1):47–52

    Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100(3):387–391

    PubMed  Google Scholar 

  • Pain NA, O’Connell RJ, Mendgen K, Green JR (1994) Identification of glycoproteins specific to biotrophic intracellular hyphae formed in the Colletotrichum lindemuthianum bean interaction. New Phytol 127(2):233–242

    CAS  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    CAS  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23(9):1061–1067

    CAS  PubMed  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breeding 25:1–12

    Google Scholar 

  • Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2(2):101–108

    CAS  PubMed  Google Scholar 

  • Perfect SE, Green JR, O’Connell RJ (2001) Surface characteristics of necrotrophic secondary hyphae produced by the bean anthracnose fungus, Colletotrichum lindemuthianum. Eur J Plant Pathol 107(8):813–819

    Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: A Model Genus for Studies on Pathology and Fungal-Plant Interactions. Fungal Genet Biol 27(2):186–198

    CAS  PubMed  Google Scholar 

  • Perfect SE, O’Connell RJ, Green EF, Doering-Saad C, Green JR (1998) Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum–bean interaction. Plant J 15(2):273–279

    CAS  PubMed  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens. Fungal Divers 16:131–140

    Google Scholar 

  • Phoulivong S, Cai L, Chen H, McKenzie EH, Abdelsalam K, Chukeatirote E, Hyde KD (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers 44(1):33–43

    Google Scholar 

  • Politis DJ (1975) The identity and perfect state of Colletotrichum graminicola. Mycologia 67:56–62

    Google Scholar 

  • Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers 39:89

    Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EH, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41(1):89–99

    Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590

    PubMed  Google Scholar 

  • Prusky D (1996) Pathogen quiescence in postharvest diseases. Annu Rev Phytopathol 34(1):413–434

    CAS  PubMed  Google Scholar 

  • Prusky D, Freeman S, Rodriguez RJ, Keen NT (1994) A nonpathogenic mutant strain of Colletotrichum magna induces resistance to C. gloeosporioides in avocado fruits. MPMI-Mol Plant-Microbe Interact 7(3):326–333

    CAS  Google Scholar 

  • Prusky D, McEvoy JL, Leverentz B, Conway WS (2001) Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol Plant Microbe Interact 14(9):1105–1113

    CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108(37):15079–15084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Réblová M, Gams W, Seifert KA (2011) Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 68(1):163–191

    PubMed Central  PubMed  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151(3):705–716

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    CAS  PubMed  Google Scholar 

  • Ripoche A, Jacqua G, Bussière F, Guyader S, Sierra J (2008) Survival of Colletotrichum gloeosporioides (causal agent of yam anthracnose) on yam residues decomposing in soil. Applied Soil Ecology 38(3):270–278

    Google Scholar 

  • Robinson M, Riov J, Sharon A (1998) Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64(12):5030–5032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    CAS  PubMed  Google Scholar 

  • Rodríguez-Guerra R, Ramírez-Rueda MT, Cabral-Enciso M, García-Serrano M, Lira-Maldonado Z, Gerardo Guevara-González-Chavira M, simpson J (2005) Heterothallic mating observed between Mexican isolates of Glomerella lindemuthiana. Mycologia 97(4):793--803

    Google Scholar 

  • Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA, Cannon P, Sha T (2010) Colletotrichum gloeosporioides sl associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102(6):1318–1338

    PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    CAS  PubMed  Google Scholar 

  • Rollins JA (1996) The characterization and inheritance of chromosomal variation in Glomerella graminicola. Ph.D. Dissertation, Purdue University, West Lafayette Indiana

    Google Scholar 

  • Santamaría J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50(1):1–8

    PubMed  Google Scholar 

  • Scott-Craig JS, Panaccione DG, Pocard JA, Walton JD (1992) The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267(36):26044–26049

    CAS  PubMed  Google Scholar 

  • Sherriff C, Whelan MJ, Arnold GM, Bailey JA (1995) rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycol Res 99(4):475–478

    CAS  Google Scholar 

  • Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112(2):225–230

    CAS  PubMed  Google Scholar 

  • Shen S, Goodwin PH, Hsiang T (2001) Infection of Nicotiana species by the anthracnose fungus, Colletotrichum orbiculare. Eur J Plant Pathol 107(8):767–773

    Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact 19(3):270–279

    CAS  PubMed  Google Scholar 

  • Shivaprakash MR, Appannanavar SB, Dhaliwal M, Gupta A, Gupta S, Gupta A, Chakrabarti A (2011) Colletotrichum truncatum: an unusual pathogen causing mycotic keratitis and endophthalmitis. J Clin Microbiol 49(8):2894–2898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9:242

    PubMed Central  PubMed  Google Scholar 

  • Singh J, Quereshi S, Banerjee N, Pandey AK (2010) Production and extraction of phytotoxins from Colletotrichum dematium FGCC# 20 effective against Parthenium hysterophorus L. Braz Arch Biol Technol 53(3):669–678

    Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50(6):2199–2223

    Google Scholar 

  • Soares DJ, Barreto RW, Braun U (2009) Brazilian mycobiota of the aquatic weed Sagittaria montevidensis. Mycologia 101(3):401–416

    CAS  PubMed  Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Reinhardt R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330(6010):1543–1546

    CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux AJ (1997) Systemic acquired resistance. Annu Rev Phytopathol 35(1):235–270

    CAS  PubMed  Google Scholar 

  • Stephenson SA, Hatfield J, Rusu AG, Maclean DJ, Manners JM (2000) CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol Plant Microbe Interact 13(9):929–941

    CAS  PubMed  Google Scholar 

  • Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    CAS  PubMed  Google Scholar 

  • Stukenbrock EH, Jorgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH (2010) Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLos genetics 6(12):e1001189

    Google Scholar 

  • Sukno SA, García VM, Shaw BD, Thon MR (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 74(3):823–832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton BC (1968) The appressoria of Colletotrichum graminicola and C. falcatum. Can J Bot 46(7):873–876

    Google Scholar 

  • Sutton BC (1980) The coelomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, pp 522–537

    Google Scholar 

  • Takahara H, Dolf A, Endl E, O’Connell R (2009) Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. Plant J 59(4):672–683

    CAS  PubMed  Google Scholar 

  • Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I (2000) The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 13(4):374–383

    CAS  PubMed  Google Scholar 

  • Tang W, Coughlan S, Crane E, Beatty M, Duvick J (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol Plant Microbe Interact 19(11):1240–1250

    CAS  PubMed  Google Scholar 

  • Thakur RP (2007) Host plant resistance to diseases: potential and limitations. Indian Journal of Plant Protection 35:17–21

    Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57(3):562–572

    Google Scholar 

  • Thon M, Pan H, Diener S, Papalas J, Taro A, Mitchell T, Dean R (2006) The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 7:R16

    PubMed Central  PubMed  Google Scholar 

  • Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56:222–231

    CAS  PubMed  Google Scholar 

  • Townsend JP, Lopez-Giraldez F (2010) Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Syst Biol 59:446–457

    CAS  PubMed  Google Scholar 

  • Urefña-Padilla AR, MacKenzie SJ, Bowen BW, Legard DE (2002) Etiology and population genetics of Colletotrichum spp. Causing crown and fruit rot of strawberry. Phytopathology 92(11):1245--1252

    Google Scholar 

  • Vaillancourt LJ, Hanau RM (1991) A method for genetic analysis of Glomerella graminicola (Colletotrichum graminicola) from maize. Phytopathology 81(5):530–534

    Google Scholar 

  • Vaillancourt L, Du M, Wang J, Rollins J, Hanau R (2000a) Genetic analysis of cross fertility between two self-sterile strains of Glomerella graminicola. Mycologia 92:430–435

    Google Scholar 

  • Vaillancourt L, Wang J, Hanau R (2000b) Genetic regulation of sexual compatibility in Glomerella graminicola. In: Prusky D, Freeman S, Dickman M (eds) Colletotrichum host specificity, pathology, and host-pathogen interaction. APS press, St. Paul MN, pp 29–44

    Google Scholar 

  • Vargas WA, Martín JMS, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Sukno SA (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol 158(3):1342–1358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varzea VMP, Rodrigues CJ, Lewis BG (2002) Distinguishing characteristics and vegetative compatibility of Colletotrichum kahawe in comparison with other related species from coffee. Plant Pathol 51(2):202–207

    Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3(3):122–138

    Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11(3):301–307

    CAS  PubMed  Google Scholar 

  • Voytas DF, Boeke JD (1993) Yeast retrotransposons and tRNAs. Trends Genet 9:421–427

    CAS  PubMed  Google Scholar 

  • Walker JC (1921) Onion smudge. University of Wisconsin, Madison, p 721

    Google Scholar 

  • Waller JM (1992) Colletotrichum diseases of perennial and other cash crops. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology pathology and control. CAB International, Wallingford, pp 167–185

    Google Scholar 

  • Wang H, Xu Z, Gao L, Hao B (2009) A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9:195

    PubMed Central  PubMed  Google Scholar 

  • Warwar V, Dickman MB (1996) Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl Environ Microbiol 62(1):74–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wasilwa LA, Correll JC, Morelock TE, McNew RE (1993) Reexamination of races of the cucurbit anthracnose pathogen Colletotrichum orbiculare. Phytopathology 83(11):1190–1198

    Google Scholar 

  • Waxman KD, Bergstrom GC (2011a) First report of anthracnose caused by Colletotrichum caudatum on indiangrass in New York. Plant Dis 95(9):1189–1189

    Google Scholar 

  • Waxman KD, Bergstrom GC (2011b) First report of anthracnose caused by Colletotrichum navitas on switchgrass in New York. Plant Dis 95(8):1032–1032

    Google Scholar 

  • Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73(1):115–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westcott C (2001) Westcott’s plant disease handbook. Kluwer Academic Pub, Boston

    Google Scholar 

  • Wharton PS, Julian AM (1996) A cytological study of compatible and incompatible interactions between Sorghum bicolor and Colletotrichum sublineolum. New Phytol 134(1):25–34

    Google Scholar 

  • Wharton PS, Julian AM, O’Connell RJ (2001) Ultrastructure of the infection of Sorghum bicolor by Colletotrichum sublineolum. Phytopathology 91:149–158

    CAS  PubMed  Google Scholar 

  • Wheeler HE (1950) Genetics of Glomerella. VIII. A genetic basis for the occurrence of minus mutants. Am J Bot 37:304–312

    Google Scholar 

  • Wheeler HE (1954) Genetics and evolution of heterothallism in Glomerella. Phytopathology 44:342–345

    Google Scholar 

  • Wheeler HE, Olive LS, Ernest CT, Edgerton CW (1948) Genetics of Glomerella. V. Crozier and ascus development. Am J Bot 35:722–728

    Google Scholar 

  • Wheeler HE, McGahen JW (1952) Genetics of Glomerella. X. Genes affecting sexual reproduction. Am J Bot 39:110–119

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Glefand JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wicklow DT, Jordan AM, Gloer JB (2009) Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Mycol Res 113(12):1433–1442

    CAS  PubMed  Google Scholar 

  • Winter RL, Lawhon SD, Halbert ND, Levine GJ, Wilson HM, Daly MK (2010) Subcutaneous infection of a cat by Colletotrichum species. J Feline Med Surg 12(10):828–830

    PubMed  Google Scholar 

  • Xie L, Zhang JZ, Wan Y, Hu DW (2010) Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ Sci B, 11(1):61–70

    Google Scholar 

  • Yamauchi J, Takayanagi N, Komeda K, Takano Y, Okuno T (2004) cAMP-PKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Mol Plant Microbe Interact 17(12):1355–1365

    CAS  PubMed  Google Scholar 

  • Yang Z, Dickman MB (1997) Regulation of cAMP and cAMP dependent protein kinase during conidial germination and appressorium formation in Colletotrichum trifolii. Physiol Mol Plant Pathol 50(2):117–127

    CAS  Google Scholar 

  • Yang Z, Dickman MB (1999a) Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic. Mol Plant Microbe Interact 12(5):430–439

    CAS  PubMed  Google Scholar 

  • Yang Z, Dickman MB (1999b) Molecular cloning and characterization of Ct-PKAR, a gene encoding the regulatory subunit of cAMP-dependent protein kinase in Colletotrichum trifolii. Arch Microbiol 171(4):249–256

    CAS  PubMed  Google Scholar 

  • Yoshino K, Irieda H, Sugimoto F, Yoshioka H, Okuno T, Takano Y (2012) Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3. Mol Plant Microbe Interact 25(5):625–636

    CAS  PubMed  Google Scholar 

  • Zare R, Gams W, Culham A (2000) A revision of Verticillium sect. Prostrata. I. Phylogenetic studies using ITS sequences. Nova Hedwigia 71(3/4):465–480

    Google Scholar 

  • Zeiders KE (1987) Leaf spot of indiangrass caused by Colletotrichum caudatum. Plant Dis 71(4):348–350

    Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98(6):1076–1087

    CAS  PubMed  Google Scholar 

  • Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39(2):269–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao XM, Wang ZQ, Shu SH, Wang WJ, Xu HJ, Ahn YJ, Wang M, Hu X (2013) Ethanol and Methanol Can Improve Huperzine A Production from Endophytic Colletotrichum gloeosporioides ES026. PLoS ONE 8(4):e61777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu P, Oudemans PV (2000) A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr Genet 38(5):241–247

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Guillaume Robin for preparing Fig. 3.3, and to Adnan Ismaiel for the sequencing that contributed to the phylogenetic tree in Fig. 3.1. The work in the Shirasu lab is supported partly by the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry and Grant-in-Aid for Scientific Research (KAKENHI; 24228008).

List of URLS

Broad Institute Colletotrichum Database: (www.broadinstitute.org/annotation/genome/colletotrichum_group/MultiHome.html)

Max Planck Institute for Plant Breeding Research Fungal Genomes: (www.mpipz.mpg.de/14157/fungal_genomes).

EnsemblFungi G. graminicola genome

(http://fungi.ensembl.org/Glomerella_graminicola/Info/Index)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Vaillancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crouch, J. et al. (2014). The Genomics of Colletotrichum . In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_3

Download citation

Publish with us

Policies and ethics