Skip to main content

Climate Projections for the Sava River Basin

  • Chapter
  • First Online:
The Sava River

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 31))

Abstract

Presented are climate change projections for the Sava river basin that follow from the ensemble of 16 combinations of the global climate models (GCM) and regional climate models (RCM). RCMs are normally configured to offer the optimal results for the region as a whole. Thus, they may have in some specific smaller domains also some systematic bias. Such eventual bias can be corrected by comparing the simulated values in smaller domain with measured values in that domain. That was done for the Sava river basin for precipitation amount and temperature for the twenty-first century and the results are presented for summer and winter conditions for two future standard climatological periods: 2011–2040 and 2071–2100 and compared with the reference period 1971–2000. In general, temperature is expected to increase over the basin area in all seasons, but the most pronounced increase can be observed for summer and winter. Precipitation is expected to decrease significantly in summer, whereas less pronounced decrease is expected in spring and autumn. Winter precipitation is expected to increase, especially in the northwestern part of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semenov MA, Doblas-Reyes FJ (2007) Utility of dynamical seasonal forecasts in predicting crop yield. Clim Res 60:71–81

    Article  Google Scholar 

  2. Schneider SH (2007) Contribution of working group 2 to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 779–810

    Google Scholar 

  3. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709

    Google Scholar 

  4. Ceglar A, Kajfež-Bogataj L (2012) Simulation of maize yield in current and changed climatic conditions: addressing modeling uncertainties and the importance of bias correction in climate model simulations. Eur J Agron 37:83–95

    Article  Google Scholar 

  5. Lindberg C, Broccoli AJ (1996) Representation of topography in spectral climate models and its effect on simulated precipitation. J Clim 9:2641–2659

    Article  Google Scholar 

  6. van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met. Office Hadley Centre, Exeter, 160 pp

    Google Scholar 

  7. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  8. Sharma D, Gupta AD, Babel MS (2007) Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrol Earth Syst Sci 11:1373–1390

    Article  Google Scholar 

  9. Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agric Forest Meteorol 138:44–53

    Article  Google Scholar 

  10. Segui PQ, Ribes A, Martin E, Habets F, Boe J (2009) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383:111–124

    Article  Google Scholar 

  11. Trenberth KE et al (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  12. Harrison EJ (1973) 3-dimensional numerical simulations of tropical systems utilizing nested finite grids. J Atmos Sci 30:1528–1543

    Article  Google Scholar 

  13. Elsberry RL, Ley GW (1976) Strategy of initializing nested grid meshes in numerical weather prediction. Mon Weather Rev 104:797–799

    Article  Google Scholar 

  14. Jones RW (1977) Nested grid for a 3-dimensional model of a tropical cyclone. J Atmos Sci 34:1528–1553

    Article  Google Scholar 

  15. Žagar N, Žagar M, Cedilnik J, Gregorič G, Rakovec J (2006) Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus A 58:445–455

    Article  Google Scholar 

  16. Déqué M, Jones R, Wild M, Giorgi F, Christensen J, Hassell D, Vidale P, Rockel B, Jacob D, Kjellstrom E, de-Castro M, Kucharski F, van-den Hurk B (2005) Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim Dynam 25:653–670

    Article  Google Scholar 

  17. Giorgi F, Mearns LO (1991) Approaches to the simulations of regional climate change: a review. Rev Geophys 29:191–216

    Article  Google Scholar 

  18. Mearns LO, Giorgi F, McDaniel L, Shields C (1995) Analysis of variability and diurnal range of daily temperature in a nested regional climate model - comparison with observations and doubled CO2 results. Clim Dynam 11:193–209

    Article  Google Scholar 

  19. Bellprat O, Kotlarski S, Luthi D, Schar C (2012) Objective calibration of regional climate models. J Geophys Res Atmos 117:D23

    Article  Google Scholar 

  20. Christensen JH, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194

    Article  Google Scholar 

  21. Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J Roy Meteorol Soc 260:241–260

    Article  Google Scholar 

  22. Reaney SM, Fowler HJ (2008) Uncertainty estimation of climate change impacts on river flow incorporating stochastic downscaling and hydrological model parameterisation error sources. Durham University, Durham, 8 pp

    Google Scholar 

  23. Déqué M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellstrom E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change 81:53–70

    Article  Google Scholar 

  24. Tao F, Yokozawa M, Zhang Z (2009) Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric Forest Meteorol 149:831–850

    Article  Google Scholar 

  25. Wood AW, Leung LR, Sridar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62:189–216

    Article  Google Scholar 

  26. Baigorria GA, Jones JW, Shin DW, Mishra A (2007) Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Clim Res 34:211–222

    Article  Google Scholar 

  27. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  28. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, 599 pp

    Google Scholar 

  29. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  30. Kjellström E, Bärring L, Gollvik S, Hansson U et al (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Rep Meteorol Climatol 108 SMHI, Norrköping, Sweden

    Google Scholar 

  31. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM Regional Climate Model Version 5 (β). Tech Rep 06-17. ISSN 1399-1388. DMI, Copenhagen

    Google Scholar 

  32. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM – the climate version of lm: Brief description and long-term applications. COSMO Newslett 6

    Google Scholar 

  33. van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO, version 2.1 KNMI-publication TR-302. KNMI, De Bilt

    Google Scholar 

  34. Haugen JE, Haakenstad H (2006) Validation of HIRHAM version 2 with 50 and 25 km resolution. RegClim Gen Tech Rep 9:159–173, Norwegian Meteorological Institute, Oslo

    Google Scholar 

  35. Collins M, Booth BB, Bhaskaran B, Harris GR, Murphy RM, Sexton DMH, Webb MJ (2010) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dynam 37:1737–1766

    Google Scholar 

  36. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  37. Radu R, Deque M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus A 60:898–910

    Article  Google Scholar 

  38. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  39. Farda A, Deque M, Somot S, Horanyi A, Spiridonov V, Toth H (2010) Model ALADIN as regional climate model for central and eastern Europe. Studia Geophys Geoda 54:313–332

    Article  Google Scholar 

  40. Jupp TE (2011) Water and climate adaptation plan for the Sava river basin (draft). World Bank project 7157750, Final Report, 109 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Ceglar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceglar, A., Rakovec, J. (2015). Climate Projections for the Sava River Basin. In: Milačič, R., Ščančar, J., Paunović, M. (eds) The Sava River. The Handbook of Environmental Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44034-6_3

Download citation

Publish with us

Policies and ethics