Skip to main content

Approximate Nonnegative Rank Is Equivalent to the Smooth Rectangle Bound

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We consider two known lower bounds on randomized communication complexity: The smooth rectangle bound and the logarithm of the approximate nonnegative rank. Our main result is that they are the same up to a multiplicative constant and a small additive term.

The logarithm of the nonnegative rank is known to be a nearly tight lower bound on the deterministic communication complexity. Our result indicates that proving the analogue for the randomized case, namely that the log approximate nonnegative rank is a nearly tight bound on randomized communication complexity, would imply the tightness of the information cost bound.

Another corollary of our result is the existence of a boolean function with a quasipolynomial gap between its approximate rank and approximate nonnegative rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Problems and results in extremal combinatorics–i. Discrete Mathematics 273(1-3), 31–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N.: Perturbed identity matrices have high rank: Proof and applications. Combinatorics, Probability & Computing 18(1-2), 3–15 (2009)

    Article  MATH  Google Scholar 

  3. Beasley, L.B., Laffey, T.J.: Real rank versus nonnegative rank. Linear Algebra and its Applications 431(12), 2330–2335 (2009); Special Issue in honor of Shmuel Friedland

    Google Scholar 

  4. Braverman, M., Rao, A.: Information equals amortized communication. In: FOCS, pp. 748–757 (2011)

    Google Scholar 

  5. Braverman, M.: Interactive information complexity. In: STOC, pp. 505–524 (2012)

    Google Scholar 

  6. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.-C.: Informational complexity and the direct sum problem for simultaneous message complexity. In: FOCS, pp. 270–278 (2001)

    Google Scholar 

  7. Gavinsky, D., Lovett, S.: En route to the log-rank conjecture: New reductions and equivalent formulations. Electronic Colloquium on Computational Complexity (ECCC) 20, 80 (2013)

    Google Scholar 

  8. Jain, R., Klauck, H.: The partition bound for classical communication complexity and query complexity. In: IEEE Conference on Computational Complexity, pp. 247–258 (2010)

    Google Scholar 

  9. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on information complexity via zero-communication protocols and applications. In: FOCS, pp. 500–509 (2012)

    Google Scholar 

  10. Kol, G., Moran, S., Shpilka, A., Yehudayoff, A.: Approximate nonnegative rank is equivalent to the smooth rectangle boundy. Electronic Colloquium on Computational Complexity (ECCC) 21, 46 (2014)

    Google Scholar 

  11. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press (1997)

    Google Scholar 

  12. Krause, M.: Geometric arguments yield better bounds for threshold circuits and distributed computing. Theoretical Computer Science 156(1&2), 99–117 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Troy Lee’s homepage. Some open problems around nonnegative rank (2012), http://www.research.rutgers.edu/~troyjlee/open_problems.pdf

  14. Laplante, S., Lerays, V., Roland, J.: Classical and quantum partition bound and detector inefficiency. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 617–628. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Lovász, L.: Communication complexity: A survey. In: Path, Flows, and VLSI-Networks, pp. 235–265 (1990)

    Google Scholar 

  16. Lovett, S.: Communication is bounded by root of rank. CoRR, abs/1306.1877 (2013)

    Google Scholar 

  17. Lovász, L., Saks, M.E.: Lattices, möbius functions and communication complexity. In: FOCS, pp. 81–90 (1988)

    Google Scholar 

  18. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. In: STOC, pp. 699–708 (2007)

    Google Scholar 

  19. Lee, T., Shraibman, A.: An approximation algorithm for approximation rank. In: IEEE Conference on Computational Complexity, pp. 351–357 (2009)

    Google Scholar 

  20. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3(4), 263–398 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mehlhorn, K., Schmidt, E.M.: Las vegas is better than determinism in vlsi and distributed computing (extended abstract). In: STOC, pp. 330–337 (1982)

    Google Scholar 

  22. Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39(2), 67–71 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15(4), 557–565 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Razborov, A.A.: Quantum communication complexity of symmetric predicates. Izvestiya of the Russian Academy of Science, Mathematics 67, 2003 (2002)

    Google Scholar 

  25. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences 43(3), 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kol, G., Moran, S., Shpilka, A., Yehudayoff, A. (2014). Approximate Nonnegative Rank Is Equivalent to the Smooth Rectangle Bound. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics