Skip to main content

Privately Solving Linear Programs

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

In this paper, we initiate the systematic study of solving linear programs under differential privacy. The first step is simply to define the problem: to this end, we introduce several natural classes of private linear programs that capture different ways sensitive data can be incorporated into a linear program. For each class of linear programs we give an efficient, differentially private solver based on the multiplicative weights framework, or we give an impossibility result.

A full version of the paper with the omitted proofs and sections can be found at http://arxiv.org/abs/1402.3631 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing 8(1), 121–164 (2012)

    Article  MathSciNet  Google Scholar 

  2. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the sulq framework. In: ACM SIGACTSIGMODSIGART Symposium on Principles of Database Systems (PODS), Baltimore, Maryland (2005)

    Google Scholar 

  3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive database privacy. Journal of the ACM 60(2), 12 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bun, M., Ullman, J., Vadhan, S.P.: Fingerprinting codes and the price of approximate di erential privacy. In: ACM SIGACT Symposium on Theory of Computing (STOC), pp. 1–3. ACM, New York (2014)

    Google Scholar 

  5. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. Journal of Machine Learning Research 12, 1069–1109 (2011)

    MATH  MathSciNet  Google Scholar 

  6. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS), San Diego, California, pp. 202–210 (2003)

    Google Scholar 

  7. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: ACM SIGACT Symposium on Theory of Computing (STOC), Bethesda, Maryland, pp. 381–390 (2009)

    Google Scholar 

  10. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and di erential privacy. In: IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas, Nevada, pp. 51–60 (2010)

    Google Scholar 

  11. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially private combinatorial optimization. In: ACM SIAM Symposium on Discrete Algorithms (SODA), Austin, Texas, pp. 1106–1125 (2010)

    Google Scholar 

  12. Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data release. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas, Nevada, pp. 61–70 (2010)

    Google Scholar 

  14. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. In: Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, California, pp. 2348–2356 (2012)

    Google Scholar 

  15. Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. Journal of Machine Learning Research 1, 281–309 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Hsu, J., Roth, A., Ullman, J.: Differential privacy for the analyst via private equilibrium computation. In: ACM SIGACT Symposium on Theory of Computing (STOC), Palo Alto, California, pp. 341–350 (2013)

    Google Scholar 

  17. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. Journal of Machine Learning Research 1, 41 (2012)

    Google Scholar 

  19. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE Symposium on Foundations of Computer Science (FOCS), Providence, Rhode Island (2007)

    Google Scholar 

  20. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: ACM SIGACT Symposium on Theory of Computing (STOC), San Diego, Illinois, pp. 75–84 (2007)

    Google Scholar 

  21. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research 20(2), 257–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: ACM SIGACT Symposium on Theory of Computing (STOC), Cambridge, Massachusetts, pp. 765–774

    Google Scholar 

  23. Ullman, J.: Answering n 2 + o(1) counting queries with differential privacy is hard. In: ACM SIGACT Symposium on Theory of Computing (STOC), Palo Alto, California, pp. 361–370 (2013)

    Google Scholar 

  24. Ullman, J., Vadhan, S.: PCPs and the hardness of generating private synthetic data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, J., Roth, A., Roughgarden, T., Ullman, J. (2014). Privately Solving Linear Programs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics