Skip to main content

Numerical Investigation of the Spatial Resolution Requirements for Turbulent Rayleigh-Bénard Convection

  • Conference paper
Book cover Turbulence and Interactions

Abstract

The key requirement for setting up a direct numerical simulation (DNS) is a sufficiently fine grid allowing to resolve locally all relevant micro-scales. In case of turbulent Rayleigh-Bénard convection (RBC) this is usually done by fulfilling different analytically derived criteria for the boundary layers and the bulk flow. In order to analyse if these requirements are sufficient, DNS of turbulent RBC in a cylindrical container with aspect ratio unity and Prandtl number Pr = 0.786 have been performed for Rayleigh numbers Ra up to 109. The micro-scales obtained in the DNS as well astheir scaling with Ra are compared with the corresponding theoretical predictions. The analysis reveals that the smallest scales, occurring close to the wall, are about half of the estimated ones. Furthermore, their scaling differs slightly from the estimations while the criterion for the bulk flow fits quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers, G., Grossmann, S., Lohse, D.: Rev. Mod. Phys. 82, 503 (2009)

    Article  ADS  Google Scholar 

  2. Lohse, D., Xia, K.Q.: Annu. Rev. Fluid Mech. 42, 335 (2010)

    Google Scholar 

  3. Stevens, R.J.A.M., Verzicco, R., Lohse, D.: J. Fluid Mech. 643, 495 (2010)

    Google Scholar 

  4. Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: New J. Phys. 12, 075022 (2010)

    Google Scholar 

  5. Grötzbach, G.: J. Comp. Phys. 49, 241 (1983)

    Google Scholar 

  6. Wagner, S., Shishkina, O., Wagner, C.: J. Fluid Mech. 697, 336 (2012)

    Google Scholar 

  7. Thompson, J.E., Warsi, Z.U.A., Wayne Mastin, C.: Numerical Grid Generation: Foundations and Applications. Elsevier Science Publishing Co. (1985)

    Google Scholar 

  8. Pope, S.B.: Turbulent Flows, 1st edn. Cambridge University Press (2000)

    Google Scholar 

  9. Kunnen, R.P.J., Clercx, H.J.H., Geurts, B.J., Bokhoven, L.J.A.V., Akkermans, R.A.D., Verzicco, R.: Phys. Rev. E 77, 016302 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, S., Shishkina, O., Wagner, C. (2014). Numerical Investigation of the Spatial Resolution Requirements for Turbulent Rayleigh-Bénard Convection. In: Deville, M., Estivalezes, JL., Gleize, V., Lê, TH., Terracol, M., Vincent, S. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43489-5_22

Download citation

Publish with us

Policies and ethics