Skip to main content

Some Acetate Derived Antibiotics

  • Chapter
Biosynthesis

Part of the book series: Antibiotics ((ANTIBIOTICS))

Abstract

The present body of knowledge concerning the biosynthesis of antibiotic substances and of related but less pharmacodynamically active secondary and tertiary fungal metabolites is based upon the monumental researches of Raistrick (1949) and his coworkers, who over a quarter-century isolated and characterized many of the substances under consideration in this chapter. Structural relationships among certain of these mold products led Birch and Donovan (1953) to postulate that they are formed from condensation of acetate units (or of other acyl-CoA derivatives) via the intermediation of poly-β-ketides. At about the same time, Aghoramurthy and Seshadri (1954), based upon their structural survey of mold metabolites, proposed a central role for orsellinic acid. These important hypotheses led to a period of radioactive precursor incorporation studies. During this time the validity of the acetate condensation path was fully established, and the analogy between fungal aromatic synthesis and mammalian fatty acid biosynthesis (Rittenberg and Bloch, 1945) was strengthened. A major breakthrough in the understanding of the mechanism of fatty acid formation was the finding (Brady, 1958; Wakil, 1958), that the driving force for C2-unit condensation involves malonyl-CoA as a reactant; and tracer experiments shortly thereafter (Mosbach, 1961; Bentley and Keil, 1961; Bu’lock and Smalley, 1961; Birch et al., 1961) demonstrated that this acetate-polymalonate pathway was also operative in secondary metabolite formation by the higher fungi. As this generalized pattern for the poly-acetate route to aromatic structures (Lynen and Tada, 1961) became more fully delineated, it was clear that further advances in this area would probably result from increased emphasis on studies with cell-free enzyme systems (Bassett and Tanenbaum, 1960) and from the use of biochemical mutants (cf. Bassett and Tanenbaum, 1958). Rapid progress has, however, been hampered by lack of generally applicable, reproducible methods for obtaining cell-free extracts from the fungal mycelium, coupled to the discouraging fact that detectable intermediates in fatty acid synthesis (ALBERTS et al., 1963; Brodie et al., 1963) or in fatty acid oxidation (Drysdale and Lardy, 1953) have not been found. The inherent instability of higher poly-β-ketides in the free linear state, (Collie, 1907) also makes the isolation of presumptive fungal intermediates unlikely, although the stabilized pyrone form of a lower, methylated oligoketide (Brenneisen et al., 1964) has been obtained from Penicillium stipitatum. In the near future, it is conceivable that the combined application of suitably labelled novel organic intermediates, such as the stable polypyrone acetate-malonate progenitors of Money et al. (1965), to cell-free multienzyme synthetic systems (Gatenbeck and Hermodsson, 1965), may lead not only to striking advances in our understanding of antibiotic biosyntheses, but may also provide a facile route for the production of trial quantities of antibiotic analogs.

“.... there are signs of order and of a general underlying design in the biochemistry of fungi. I share Haldane’s view that by the careful investigation .... of mutants .... much may be learned about the intermediate metabolism of these organisms”.

H. Raistrick (1949)

Symbols used. labelled carbons derived from acetate-1-14C and acetate-2-14C respectively; from labelled formate or methyl-14C-methionine or their biological equivalents; radioactive position in a synthetic precursor; labelled positions derived from mevalonic-2- or -4-14C, respectively. Other specialized labels as depicted in the figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghoramurthy, K., and T. R. Seshadri: A theory of biosynthesis of some mold products. J. Sci. Ind. Research (India) 13A, 114 (1954).

    Google Scholar 

  • Alberts, A. W., P. Goldman, and P. R. Vagelos: The condensation reaction of fatty acid synthesis I. Separation and properties of the enzymes. J. Biol. Chem. 238, 557 (1963).

    PubMed  CAS  Google Scholar 

  • AN Drew, I. G., and W. Segal: Mould tropolones: Biosynthesis and alkali-isomerization of stipitatic and decarboxylated stipitatic acid. J. Chem. Soc. 1964, 607.

    Google Scholar 

  • Arcamone, F., G. Franceschi, P. Orezzi, G. Cassinelli, W. Barbiere, and R. Mondelli: Daunomycin I. the structure of daunomycin. J. Am. Chem. Soc. 86, 5334 (1964).

    Article  CAS  Google Scholar 

  • Baddiley, J., G. Ehrensvard, E. Klein, I. Reio, and E. Saluste: Acetic acid metabolism in Torulopsis utilis II. Metabolic connection between acetic acid and tyrosine and a method of degradation of the phenolic ring structure in tyrosine. J. Biol. Chem. 183, 777 (1950).

    CAS  Google Scholar 

  • Balan, J., A. Kjaer, S. KovAC, and R. H. S.Apiro: The structure of trypacidin. Acta Chem. Scand. 19, 528 (1965).

    Google Scholar 

  • Bassett, E. W., and S. W. Tanenbaum: The metabolic products of Penicillium patulum and their probable interrelationship. Experientia 14, 38 (1958).

    Article  CAS  Google Scholar 

  • Bassett, E. W., and S. W. Tanenbaum: Acetyl-coenzyme A in patulin biosynthesis. Biochim. et Biophys. Acta 40, 535 (1960).

    CAS  Google Scholar 

  • Beckwith, J., and L. P. Hager: Biological chlorination Viii. Late intermediates in the biosynthesis of caldariomycin. J. Biol. Chem. 238, 309 (1963).

    Google Scholar 

  • Bentley, R.: Aromatic synthesis in molds: formation of the tropolone stipitatic acid. Biochim et Biophys. Acta 29, 666 (1958).

    CAS  Google Scholar 

  • Bentley, R.: Biosynthesis of tropolones in Penicillium stipitatum II. The degradation of C14-labeled stipitatonic and stipitatic acids. J. Biol. Chem. 238, 1889 (1963 a).

    Google Scholar 

  • Bentley, R.: Biosynthesis of tropolones in Penicillium stipitatum Iii. Tracer studies on the formation of stipitatonic and stipitatic acids. J. Biol. Chem. 238, 1895 (1963b).

    PubMed  CAS  Google Scholar 

  • Bentley, R., and C. P. Thiessen: Tropolone biosynthesis: the enzymatic decarboxylation of stipitatonic and puberulonic acids. Nature 184, 552 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Bentley, R., and J. G. Keil: The role of acetate and malonate in the biosynthesis of penicillic acid. Proc. Chem. Soc. 1961, 111.

    Google Scholar 

  • Bentley, R., and C. P. Thiessen: Biosynthesis of tropolones in Penicillium stipitatum I. The isolation, separation and assay of stipitatonic and stipitatic acids. J. Biol. Chem. 238, 1880 (1963).

    PubMed  CAS  Google Scholar 

  • Bentley, R., J. A. Ghaphery, and J. G. Keil: Effect of ethionine on tropolone bio- synthesis in Penicillium stipitatum. Arch. Biochem. Biophys. 111, 80 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Birch, A. J.: Quinones in Electron Transport, Ciba Foundation Symposium. (G. E. W. Wolstenholme and C. M. O’Connor, Eds.) p. 233. Boston: Little, Brown & Co. 1961.

    Google Scholar 

  • Birch, A. J., and F. W. Donovan: Studies in relation to biosynthesis I. Some possible routes to derivates of orcinol and phloroglucinol. Australian J Chem. 6, 360 (1953).

    Article  CAS  Google Scholar 

  • Birch, A. J., R. A. Massey-Westropp, and C. J. Moye: Studies in relation to biosynthesis Vii. 2-hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Australian J. Chem. 8, 539 (1955).

    CAS  Google Scholar 

  • Birch, A. J., G. E. Blance, and H. Smith: Studies in relation to biosynthesis. Part. Xviii. Penicillic acid. J. Chem. Soc. 1958a, 45–82.

    Google Scholar 

  • Birch, A. J., R. J. English, R. A. Massey-Westropp, and H. Smith: Studies in relation to biosynthesis. Part XV. Origin of the terpenoid structures in mycelianamide and mycophenolic acid. J. Chem. Soc. 1958b, 369.

    Google Scholar 

  • Birch, A. J., P. Fitton, E. Pride, A. J. Ryan, H. Smith, and W. P. Whalley: Studies in relation to biosynthesis. Part. Xvii. sclerotiorin, citrinin and citromycetin. J. Chem. Soc. 1958c, 4576.

    Google Scholar 

  • Birch, A. J., R. I. Fryer, and H. Smith: The biosynthesis of aurantiogliocladin and gliorosein: a possible relation to biosynthesis of ubiquinone (coenzyme Q). Proc. Chem. Soc. 1958d, 343.

    Google Scholar 

  • Birch, A. J., and M. KocoR: Studies in relation to biosynthesis. Part Xxii. Palitantin and cyclopaldic acid. J. Chem. Soc. 1960, 866.

    Google Scholar 

  • Birch, A. J., A. Cassera, and R. W. Rickards: Intermediates in biosynthesis from acetic acid units. Chem. & Ind. ( London ) 1961, 792.

    Google Scholar 

  • Birch, A. J., M. KocoR, N. Shepard, and J. Winter: Studies in relation to biosynthesis. Part Xxix. The terpenoid chain of mycelianamide. J. Chem. Soc. 1962a, 1502.

    Google Scholar 

  • Birch, A. J., and E. Pride: Studies in relation to biosynthesis. Part Xxvi. 7-hydroxy4,6-dimethylphthalide. J. Chem. Soc. 1962b, 370.

    Google Scholar 

  • Birch, A. J., A. J. Ryan, J. Schofield, and H. Smith: Studies in relation to biosynthesis. Part Xxxvii. Some structures derived from acetic acid by two pathways. J. Chem. Soc. 1965, 1231.

    Google Scholar 

  • Birkinshaw, J. H.: Chemistry of the fungi. Ann. Rev. Biochem. 22, 371 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Birkinshaw, J. A., and H. Raistrick: Studies in the biochemistry of microorganisms. 23. Puberulic acid C,H,06 and an acid C8H,06, new products of the metabolism of glucose by P. puberulum Bainier, P. aurantio-virens Biourge. Biochem. J. 26, 441 (1932).

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., A. R. Chambers, and H. Raistrick: Studies in the biochemistry of microorganisms. 70. Stipitatic acid C8H606 a metabolic product of Penicillium stipitatum Thom. Biochem. J. 36, 242 (1942).

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., A. Bracken, and H. Raistrick: Studies in the biochemistry of microorganisms. 72. Gentisyl alcohol, a metabolic product of Penicillium patulum Bainier. Biochem. J. 37, 726 (1943).

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and A. Gowlland: Studies in the biochemistry of microorganisms 101. Production and biosynthesis of orsellinic acid by Penicillium madriti G. Smith. Biochem. J. 84, 342 (1962).

    CAS  Google Scholar 

  • Birkinshaw, J. H., M. Luckner, Y. S. Mohammed, K. Mothes, and C. E. Stickings: Studies on the biochemistry of microorganisms. 114. Viridicatol and cyclopenol, metabolites of P. viridicatum Westling and P. cyclopium Westling. Biochem. J. 89, 196 (1963).

    PubMed  CAS  Google Scholar 

  • Bracken, A., A. Pocker, and H. Raistrick: Studies in the biochemistry of microorganisms. 93. cyclopenin, a nitrogen containing metabolite of Penicillium cyclopium Westling. Biochem. J. 57, 587 (1954).

    PubMed  CAS  Google Scholar 

  • Brady, R. 0.: The enzymatic synthesis of fatty acids by aldol condensation. Proc. Natl. Acad. Sci. U. S. 44, 933 (1958).

    Article  Google Scholar 

  • Breen, J., J. C. Dacre, H. Raistrick, and G. Smith: Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline colouring matter of Penicillium rugulosum Thom. Biochem. J. 60, 618 (1955).

    PubMed  CAS  Google Scholar 

  • Brenneisen, P. E., T. E. Acker, and S. W. Tanenbaum: Isolation and structure of a methyltriacetic lactone from Penicillium stipitatum. J. Am. Chem. Soc. 86, 1264 (1964).

    Article  CAS  Google Scholar 

  • Brodie, J. D., G. Wasson, and J. W. Porter: Enzyme-bound intermediates in the biosynthesis of mevalonic and palmitic acids. J. Biol. Chem. 239, 1346 (1964).

    PubMed  CAS  Google Scholar 

  • Bu’lock, J. D., and A. J. Ryan: The biogenesis of patulin. Proc. Chem. Soc. 1958, 222.

    Google Scholar 

  • Bu’lock, J. D., and H. M. Smalley: Biosynthsesis of aromatic substances from acetyland malonyl-coenzyme A. Proc. Chem. Soc. 1961, 209.

    Google Scholar 

  • Bu’lock, A. J., and A. J. Powell: Secondary metabolism: an explanation in terms of induced enzyme mechanisms. Experientia 21, 55 (1965).

    Article  Google Scholar 

  • Burton, H. S.: Antibiotics from Aspergillus melleus. Nature 165, 274 (1965).

    Article  Google Scholar 

  • Collie, J. N.: Derivatives of the multiple keten group. J. Chem. Soc. 91, 1806 (1907).

    Article  Google Scholar 

  • Corcoran, J. W., T. Kaneda, and J. C. Butte: Actimomycete antibiotics I. The biological incorporation of propionate into the macrocyclic lactone on erythromycin. J. Biol. Chem. 235, pc29 (1960).

    Google Scholar 

  • Cunningham, K. G., and G. G. Freeman: The isolation and some chemical properties of viridicatin, a metabolic product of Penicillium viridicatum Westling. Biochem. J. 53, 328 (1953).

    PubMed  CAS  Google Scholar 

  • Curtis, R. F., P. C. Harries, C. H. Hassall, and J. O. Levi: The biosynthesis of phenols 5. the relationships of some phenolic metabolites of mutants of Aspergillus terreus Thom. I. M. I. 16043. Biochem. J. 90, 43 (1964).

    PubMed  CAS  Google Scholar 

  • Davis, B. D.: Biosynthesis of aromatic amino acids. Symp. on Amino Acid Metabolism (W. P. Mcelroy and H. B. Glass, Eds.), p. 799. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Dewar, M. J. S.: Structure of stipitatic acid. Nature 155, 50 (1945).

    Article  CAS  Google Scholar 

  • Divekar, P. V., P. E. Brenneisen, and S. W. Tanenbaum: StipitatiC acid ethyl ester; a naturally occurring tropolone derivative. Biochim. et Biophys. Acta 50, 588 (1961).

    CAS  Google Scholar 

  • Divekar, P. V., H. Raistrick, T. A. Dobson, and L. C. Vining: Studies on the biochemistry of microorganisms. Part. 117. Sepedonin, a tropolone metabolite of Sepedonium chrysospermum. Fries. Can. J. Chem. 43, 1835 (1965).

    CAS  Google Scholar 

  • Drysdale, G. R., and H. A. Lardy: Fatty acid oxidation by a soluble enzyme system from mitochondria. J. Biol. Chem. 202, 119 (1953).

    PubMed  CAS  Google Scholar 

  • Ehrensvard, G.: Some observations on aromatic biosynthesis in Penicillium urticae Bainier. Exptl. Cell. Research, Suppl. 3, 102 (1955).

    Google Scholar 

  • Ferretti, L. D., and J. H. Richards: The biogenesis of the mold tropolones. Proc. Natl. Acad. Sci. U. S. 46, 1438 (1960).

    Article  CAS  Google Scholar 

  • Friedman, S. M., T. Kaneda, and J. W. Corcoran: Antibiotic glycosides V. Comparison of 2-methylmalonate and propionate as precursors of the Cal branched chain lactone in erythromycin. J. Biol. Chem. 239, 2386 (1964).

    PubMed  CAS  Google Scholar 

  • Gatenbeck, S.: Incorporation of 14C-acetate into the phenolic substances of Penicillium islandicum Sopp. Acta Chem. Scand. 12, 1985 (1958).

    Google Scholar 

  • Gatenbeck, S.: On the biosynthesis of the pigments of P. islandicum, II. Acta Chem. Scand. 14, 296 (1960).

    Article  Google Scholar 

  • Gatenbeck, S.: The mechanism of the biological formation of the anthraquinones. Acta Chem. Scand. 16, 1053 (1962).

    Article  CAS  Google Scholar 

  • Gatenbeck, S., and K. Mosbach: Acetate carboxyl oxygen (180) as donor for phenolic hydroxy groups of orsellinic acid produced by fungi. Acta Chem. Scand. 13, 1561 (1959).

    Article  CAS  Google Scholar 

  • Gatenbeck, S., and K. Mosbach: The mechanism of the biosynthesis of citromycetin. Biochem. Biophys. Research Commun 11, 166 (1963).

    Article  CAS  Google Scholar 

  • Gatenbeck, S., and S. Hermodsson: Enzymic synthesis of the aromatic product alternariol. Acta Chem. Scand. 19, 65 (1965).

    Article  CAS  Google Scholar 

  • Grisebach, H., u. H. AcHenbach: Zur Biogenese der Makrolide Iii. Über den Einbau von Propionsäure [114C-3-T] und [2–14C-3T] in Magnamycin. Z. Naturforsch. 17b, 6 (1962a).

    Google Scholar 

  • Grisebach, H., W. Hofheinz, u. H. Achenbach: Zur Biogenese der Makrolide VI. Über die Beteiligungen von methylmalonsaure bei der biogenese des Erythromycins. Z. Naturforsch. 17b, 64 (1962b).

    Google Scholar 

  • Hassall, C. H.: The biosynthesis of geodoxin and related compounds. In: Biogenesis of antibiotic substances (Z. Vanek and Z. Hostalek, eds.), p. 52. New York: Academic Press 1965.

    Google Scholar 

  • Hassall, C. H., and A. I. Scott: Chemistry of natural phenolic compounds (W. D. Ollis, ed.), p. 119. New York: Pergamon Press 1961.

    Google Scholar 

  • Hassall, C. H., and D. W. Jones: The biosynthesis of phenols. Part IV. A new metabolic product of A. terreus Thom. J. Chem. Soc. 1962, 4189.

    Google Scholar 

  • KikucHI, M.: Studies on pigment formation in P. islandicum Sopp. Nrrl 1036 during cultivation. Botan. Mag. (Tokyo) 74, 42 (1961).

    Google Scholar 

  • Komatsu, E.: Dehydrogenation of dihydrogeodin to geodin by washed mycelium or mycelial extract of Penicillium estinogenum Komatsu and Abe. Chem. Abstr. 52, 16473 (1958).

    Google Scholar 

  • Luckner, M.: Über die fermentative Umwandlung von Cyclopenin in Viridicatin (2,3-dihydroxy-4-phenyl-chinolin) und cyclopenol in viridicatol (2,33’-trihydroxy4-phenyl-chinolin). Verh. Ges. Expt. Med. D. D. R. 6, 395 (1964).

    Google Scholar 

  • Luckner, M., u. K. Mothes: Zur Bildung von Chinolinalkaloiden in Pflanzen I. Die Biosynthese von Viridicatin. Arch. Pharm. 296, 18 (1963).

    Article  CAS  Google Scholar 

  • Lynen, F., u. M. Tada: Die biochemischen Grundlagen der Polyacetat-Regel. Angew. Chem. 73, 513 (1961).

    Article  CAS  Google Scholar 

  • Mohammed, Y. S.: The structure of cyclopenin and cyclopenol, metabolic products from P. cyclopium änd P. viridicatum Westling. Tetrahedron Letters 28, 1953 (1963).

    Article  Google Scholar 

  • Money, T., I. H. Qureshi, G. B. Webster, and A. I. Scott: Chemistry of polypyrones. A model for acetogenin biosynthesis. J. Amer. Chem. Soc. 87, 3004 (1965).

    Article  CAS  Google Scholar 

  • Mosbach, K.: Die Biosynthese der Orsellinsäure and Penicillinsäure. Acta Chem. Scand. 14, 457 (1960).

    Article  CAS  Google Scholar 

  • Mosbach, K.: Die Rolle der Malonsäure in der biosynthese der Orsellinsäure. Naturwissenschaften 48, 525 (1961).

    Article  CAS  Google Scholar 

  • Mosbach, K.: The role of propionic acid in Penicillium baarnense. Formation of homoorsellinic acid by utilization of propionic acid. Acta Chem. Scand. 18, 1591 (1964).

    Article  CAS  Google Scholar 

  • Ollis, W. D., and I. O. Sutherland: Chemistry of natural phenolic products, p. 212. New York: Pergamon Press 1961.

    Google Scholar 

  • Ollis, W. D., I. O. Sutherland, R. C. Codner, J. J. Gordon, and G. A. Miller: The incorporation of propionate in the biosynthesis of e-pyrromycinone (rutilant-none). Proc. Chem. Soc. 1960, 347.

    Google Scholar 

  • Oxford, A. E., and H. Raistrick: Studies in the biochemistry of microorganisms. 30. The molecular constitution of the metabolic products of Penicillium brevi-compactum Dierckx and related species. I. the acids CI0Hm05, CI0HI006, and C10H1007. Biochem. J. 27, 634 (1933).

    PubMed  CAS  Google Scholar 

  • Oxford, A. E., and H. Raistrick: Studies on the biochemistry of microorganisms. 76. Mycelianamide, C22H2806N2. A metabolic product of P. griseofulvum Dierckx. Part I. Biochem. J. 42, 323 (1948).

    CAS  Google Scholar 

  • Packter, N. M.: Studies on the biosynthesis of quinones in fungi. incorporation of 6-methylsalicyclic acid into fumigatin and related compounds in A. fumigatus. I. M. I. 89353. Biochem. J. 97, 321 (1965).

    CAS  Google Scholar 

  • Packter, N. M., and J. Glover: Biosynthesis of ‘AC fumigatin in Aspergillus fumigatus Fresenius. Biochem. et Biophys. Acta 100, 50 (1965a).

    CAS  Google Scholar 

  • Packter, N. M., and J. Glover: Biosynthesis of toluquinones in microorganisms. Biochim. et Biophys. Acta 100, 57 (1965b).

    Google Scholar 

  • Pettersson, G.: The biosynthesis of fumigatin. Acta Chem. Scand. 17, 1323 (1963).

    Article  CAS  Google Scholar 

  • Pettersson, G.: On the biosynthesis of toluquinones from Aspergillus fumigatus I. The biogenetic role of orsellinic acid and orcinol. Acta Chem. Scand. 18, 1202 (1964a).

    Article  CAS  Google Scholar 

  • Pettersson, G.: On the biosynthesis of toluquinones from A. fumigatus II. Hydroquinone forms of the pigments. Acta Chem. Scand. 18, 1428 (1964b).

    Article  CAS  Google Scholar 

  • Pettersson, G.: On the biosynthesis of toluquinones from A. fumigatus Iii. Autoxidation of the hydroquinone forms of the pigments. Acta Chem. Scand. 18, 1839 (1964c).

    Article  CAS  Google Scholar 

  • Pettersson, G.: Two new benzoquinones from Gliocladium roseum. Acta Chem. Scand. 18, 2303 (1964d).

    Article  Google Scholar 

  • Pettersson, G.: Synthesis of 2,3-dihydroxy-5,6-dimethyl-1,4-benzoquinone. Acta Chem. Scand. 18, 2309 (1964e).

    Article  CAS  Google Scholar 

  • Pettersson, G.: The biosynthesis of flavipin I. Incorporation of acetate and methionine. Acta Chem. Scand. 19, 35 (1965a).

    Article  CAS  Google Scholar 

  • Pettersson, G.: New phenolic metabolites from Gliocladium roseum. Acta Chem. Scand. 19, 414 (1965 b).

    Google Scholar 

  • Raistrick, H.: A region of biosynthesis, Bakerian lecture, Proc. Roy. Sci. (London) B136, 481 (1949).

    Article  Google Scholar 

  • Raistrick, H., and G. Smith: Products of Aspergillus terreus Thom. Part II. Two new chlorine containing metabolic products, geodin and erdin, Biochem. J. 30, 1315 (1936).

    CAS  Google Scholar 

  • Reio, L.: A method for the paper chromatographic separation and identification of phenol derivatives, mould metabolites, and related compounds of biochemical interest, using “reference system”. J. Chromatog. 1, 338 (1958).

    Article  CAS  Google Scholar 

  • Richards, J. H., and J. B. Hendrickson: The biosynthesis of steroids, terpenes and acetogenins, p 62. New York: W. A. Benjamin 1964.

    Google Scholar 

  • Rickards, R. W.: Chemistry of Natural phenolic compounds (W. D. Ollis, ed.), p. 12. New York: Pergamon Press 1961.

    Google Scholar 

  • Rittenberg, D., and K. Bloch: The utilization of acetic acid for the synthesis of fatty acids. J. Biol. Chem. 160, 417 (1945).

    PubMed  CAS  Google Scholar 

  • Schwenk, E., G. J. Alexander, A. M. Gold, and D. F. Stevens: Biogenesis of citrinin. J. Biol. Chem. 233, 1211 (1958).

    PubMed  CAS  Google Scholar 

  • Shibata, S., and T. Ikekawa: Biosynthesis of rugulosin. Chem. & Ind. ( London ) 1962, 360.

    Google Scholar 

  • Shibata, S., and T. Ikekawa: Metabolic products of fungi. XX. The biosynthesis of rugulosin. Chem. Pharm. Bull. (Tokyo) 11, 368 (1963).

    Article  CAS  Google Scholar 

  • Tanenbaum, S. W.: Reflections on the fungal formation of acetate-derived compounds. In: Biogenesis of antibiotic substances (Z. Vanek and Z. Hostalek, eds.), p. 143. New York: Academic Press 1965.

    Google Scholar 

  • Tanenbaum, S. W., E. W. Bassett, and M. Kaplan: Environmental factors relating to tropolone formation by Penicillium stipitatum. Arch. Biochem. Biophys. 81, 169 (1958a).

    Article  Google Scholar 

  • Tanenbaum, S. W., and E. W. Bassett: The biosynthesis of patulin. I. Related aromatic substances from Penicillium patulum,strain 2159A; II, the general physiology of several strains of P. patulum. Biochim. et Biophys. Acta 28, 21, 247 (1958 b).

    Google Scholar 

  • Tanenbaum, S. W., and E. W. Bassett: The biosynthesis of patulin Iii. Evidence for a molecular rearrangement of the aromatic ring. J. Biol. Chem. 234, 1861 (1959).

    PubMed  CAS  Google Scholar 

  • Tanenbaum, S. W., and E. W. Bassett: Cell-free biosynthesis of the tropolone ring. Biochim. et Biophys. Acta 59, 524 (1962).

    CAS  Google Scholar 

  • Thomas, R.: Biosynthetic pathways involving ring cleavage. In: Biogenesis of antibiotic substances (Z. Vanek and Z. Hostalek, eds.), p. 155. New York: Academic Press 1965.

    Google Scholar 

  • Wakil, S. J.: A malonic acid derivative as an intermediate in fatty acid synthesis. J. Am. Chem. Soc. 80, 6465 (1958).

    Article  CAS  Google Scholar 

  • Wright, L. D.: Biosynthesis of isoprenoid compounds. Ann. Rev. Biochem. 30, 499 (1961).

    Article  Google Scholar 

  • Yamamoto, I., K. Nitta, and Y. Yamamoto: Studies on the metabolic products of Oospora sp. Part. II. Chemical structure of oospolactone. J. Agr. Biol. Chem. Japan 25, 405 (1961).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanenbaum, S.W. (1967). Some Acetate Derived Antibiotics. In: Gottlieb, D., Shaw, P.D. (eds) Biosynthesis. Antibiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38441-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38441-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37650-8

  • Online ISBN: 978-3-662-38441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics