Skip to main content
  • 72 Accesses

Abstract

The isolation of a pure culture of bacteria involves not only the elimination of foreign species, but also an adaptation to growth under different environmental conditions (Parr and Robbins 1942). The latter naturally results in the selection of those cells most suited to the new environment, a process which will be repeated on transfer from one set of cultural conditions to another. Thus, any changes in the environment are likely to induce modifications in physiological and/or morphological characteristics (Dubos 1945). Even when the composition of the initial medium and other environmental factors remain constant and reproducible, the characteristics of a pure culture are not invariable. All bacterial species, with the possible exceptions of members of the diphtheria group and Bacillus mallei, exhibit a maximum length in the early stages of the growth cycle (e.g., Henrici 1928, Clark and Ruehl 1919, and Huntington and Winslow 1937). During the lag period in the development of the culture, the mean cell volume increases to a maximum before the maximum multiplication rate is attained. This increase in cell volume is due both to an increase in cell substance and to the uptake of water (Malmgren and Hedén 1947).

The following abbreviations of generic names are used throughout this review: A. = Aerobacter, B. = Bacillus, Cl. = Clostridium, E. = Escherichia, L. = Lactobacillus, P. = Proteus, Ps. = Pseudomonas, S. = Salmonella, Staph. = Staphylococcus, Strep. = Streptococcus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  • Aaronson, S.: The purine requirement of Staphylococcus f lavocyaneus. J. gen. Microbiol. 12, 147–155 (1955).

    PubMed  CAS  Google Scholar 

  • Abelson, P. H., and E. Aldous: Ion antagonisms in microorganisms: Interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc and manganese. J. Bact. 60, 401–413 (1950).

    PubMed  CAS  Google Scholar 

  • Adamson, R. S.: On the cultural characteristics of certain anaerobic bacteria isolated from war wounds. J. Path. Bact. 22, 345–400 (1918).

    Google Scholar 

  • Ainley-Walker, E. W., and W. Murray: The effect of certain dyes upon the cultural characteristics of the Bacillus typhosus and some other micro-organisms. Brit. med. J. 1904I1, 16–18.

    Google Scholar 

  • Albert, A.: The acridines. New York: Longmans, Green 1951.

    Google Scholar 

  • Amaha, M, J Ordal and A. Touba: Sporulation requirements of Bacillus coagulans var. thermoacidurans in complex media. J. Bact. 72, 34–41 (1956).

    PubMed  CAS  Google Scholar 

  • Anderson, E. H.: Heat reactivation of ultraviolet-inactivated bacteria. J. Bact. 61, 389–394 (1951).

    PubMed  CAS  Google Scholar 

  • Bard, R. C., and I. C. Gunsalus: Glucose metabolism of Clostridium perfringens; existence of a metallo-aldolase. J. Bact. 59, 387–400 (1950).

    PubMed  CAS  Google Scholar 

  • Barner, H. D., and S. S. Cohen: Synchronization of division of a thymineless mutant of Escherichia coli. (Abstr.) Fed. Proc. 14, 177 (1955).

    Google Scholar 

  • Barner, H. D., and S. S. Cohen: Synchronization of division of a thymineless mutant of Escherichia coli. J. Bact. 72, 115–123 (1956).

    PubMed  CAS  Google Scholar 

  • Barron, E. S. G., L. Sekt and P. Johnson: Mechanism of action of ionizing radiations. Viii. Effect of hydrogen peroxide on cell metabolism. Arch. Biochem. 41, 188–202 (1952).

    PubMed  CAS  Google Scholar 

  • Baskett, A. C.: Resistance of Bact. lactis aerogenes to proflavine. II. Direct induction of adaptation. Proc. roy. Soc. B 139, 250–252 (1952).

    Google Scholar 

  • Bellamy, W. D., and J. W. Klimek • Some properties of penicillin-resistant staphylococci. J. Bact. 55, 153–160 (1948).

    Google Scholar 

  • Benigno, P., and T. Berti: Morphological variations of Esch. coli from effects of detergents. Boll. Ist. sieroter. milan. 30, 90 (1950) [Italian].

    Google Scholar 

  • Bennet-Clark, J.: Catalase activity in Escherichia coli. J. Bact. 64, 527–530 (1952).

    Google Scholar 

  • Bergersen, F. J.: Cytological changes induced in Bacterium coli by chloramphenicol. J. gen. Microbiol. 9, 353–356 (1953).

    PubMed  CAS  Google Scholar 

  • Bergersen, F. J.: Filamentous forms of Bacillus megaterium. J. gen. Microbiol. 11, 175–179 (1954).

    PubMed  CAS  Google Scholar 

  • Bergmann, E. D., and S. Sicher: Mode of action of chloramphenicol. Nature (Lond.) 170, 931–932 (1952).

    CAS  Google Scholar 

  • Berrill, N. J.: Malignancy in relation to organization and differentiation. Physiol. Rev. 23, 101–123 (1943).

    Google Scholar 

  • Biagani, C.: Indirect action of X-rays on Escherichia coli at various concentrations. Nature (Lond.) 172, 868–869 (1953).

    Google Scholar 

  • Biggers, J. D., L. M. Rinaldini and M. Webb: The study of growth factors in tissue culture. Symp. Soc. exp. Biol. 11, 264–297 (1957).

    PubMed  CAS  Google Scholar 

  • Biller, D., G. E. Stapleton and A. Hollaender: The effect of X-irradiation on the respiration of Escherichia coli. J. Bact. 65, 131–135 (1953).

    Google Scholar 

  • Biller, D., and E. VoLkin: The effect of X-rays on the macromolecular organization of Escherichia coli. J. Bact. 67, 191–197 (1954).

    Google Scholar 

  • Bisset, K. A.: The cytology and life history of bacteria. Edinburgh: Livingstone 1950.

    Google Scholar 

  • Bisset, K. A.: Bacterial cytology. Int. Rev. Cytol. 1, 93–106 (1952a).

    Google Scholar 

  • Bisset, K. A.: Complete and reduced life-cycles in Rhizobium. J. gen. Microbiol. 7, 233–242 (1952b).

    PubMed  CAS  Google Scholar 

  • Bisset, K. A.: Cellular organization in bacteria. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 1–17. Cambridge: Univ. Press 1956.

    Google Scholar 

  • Bisset, K.A., and P. E. Pease: The distribution of flagella in dividing bacteria. J. gen. Microbiol. 16, 382–384 (1957).

    PubMed  CAS  Google Scholar 

  • Boivin, A., R. Tulasne, R. Vendrely et R. Mtnck: Le noyau des bactéries. Cytologie et cytochimie des bactéries normales et des bactéries traitées par la pénicilline. Arch. Sci. physiol. 1, 307–323 (1947).

    CAS  Google Scholar 

  • Borek, E., A. Ryan and J. Rockenbach: Nucleic acid metabolism in relation to the lysogenic phenomenon. J. Bact. 69, 460–467 (1955).

    PubMed  CAS  Google Scholar 

  • Braun, H., u. R. Solomon: Die FleckfieberProteusbazillen. Z. Bakt. 82, 243 (1918).

    Google Scholar 

  • Brechtbuhler, T.: Etude sur les acides nucléiques des bactéries. I. Teneus des souches R et S de Salmonella paratyphi A et de Shigella dysenteriae en acides pentose-et désoxypentose-nucléiques au cours de leur croissance. Bull. Soc. Chim biol. (Paris) 32, 952–958 (1950).

    Google Scholar 

  • Brieger, E. M., and A.M. Glauert: A phase contrast study of reproduction in mycelia’ strains of avian tubercle bacilli. J. gen. Microbiol. 7, 287–294 (1952).

    PubMed  CAS  Google Scholar 

  • Briggs, S., K. Crawford, E. P. Abraham and G. P. Gladstone: Some properties of Gram negative bacilli obtained from a strain of Staphylococcus aureus in the presence of benzylpenicillin. J. gen. Microbiol. 16, 614–627 (1957).

    PubMed  CAS  Google Scholar 

  • Brown, J. W., and S. B. Binkley: Some biochemical changes accompanying penicillin inhibition of Sarcina lutea. J. biol. Chem. 221, 579–586 (1956).

    PubMed  CAS  Google Scholar 

  • Buchanan, R. E., and E. I. Fulmer• Physiology and biochemistry of bacteria. Baltimore: Williams and Wilkins 1930.

    Google Scholar 

  • Burton, M. O., J. J. R. Campbell and B. A. Eagles: The mineral requirements for pyocyanin production. Canad. J. Res., C 26, 15–22 (1948).

    CAS  Google Scholar 

  • Butler, G. C.: The effects of X- and y-rays on aqueous solutions of sodium thymonucleate. Canad. J. Res., B 27, 972–987 (1949).

    Google Scholar 

  • Butler, J. A. V., and K. A. Smith: The action of ionizing radiations and radio-mimetic substances on deoxyribonucleic acid. I. The action of some compounds of the “mustard” type. J. chem. Soc. 1950, 3411–3421.

    Google Scholar 

  • Caldwell, P. C., and C. N. Hinshelwood: The nucleic acid content of Bact. lactis aerogenes. J. chem. Soc. 1950, 1415–1418.

    Google Scholar 

  • Caldwell, P. C., E. L. Mackor and C. N. Hinshelwood: Ribosenucleic acid content and cell growth of Bact. lactis aerogenes. J. chem. Soc. 1950, 3151–3155.

    Google Scholar 

  • Cantelmo, P.: Azione protettiva del piruvato sulla filamentizzazione di E. coli da cloramina (metil bis ß-cloroetilamina). Riv. Ist. sieroter. ital. 30, 186–191 (1955).

    PubMed  CAS  Google Scholar 

  • Cantelmo, P., e G. Cavallo: Filamentizzazione di E. coli da tripaflavina e sua inibizione a mezzo di glucosidi della digitale. Riv. Ist. sieroter. ital. 30, 22–38 (1955).

    Google Scholar 

  • Caraco, A. e V. Veora: Azione della radiazioni X e U.V. sull attivitk trans-aminante della Pseudornonas aeruginosa. Riv. Ist. sieroter. ital. 30, 424–430 (1950).

    Google Scholar 

  • Carr, L. G. K., et M. Machebnau.: L’action de la pénicilline sur le métabolisme protéidique dans les cellules proliferantes des bactéries. (lère partie.) Ann Inst. Pasteur 87, 585–597 (1954a).

    CAS  Google Scholar 

  • Carr, L. G. K., et M. Machebnau.: L’action de la pénicilline sur le métabolisme protéidique dans les cellules proliférantes des bactéries. (2e partie.) Ann Inst. Pasteur 87, 708–713 (1954b).

    CAS  Google Scholar 

  • Carr, L. G. K., et M. Machebnau.: L’action de la pénicilline sur le métabolisme protéidique dans les cellules proliferantes des bactéries. (3e partie.) Ann. Inst. Pasteur 88, 104–107 (1955).

    CAS  Google Scholar 

  • Carrol, T. C., C. B. Danby, A. A. Eddy and C. N. HinshelwoOD: The uptake of alkali metals by bacteria. J. chem. Soc. 1950, 946–949.

    Google Scholar 

  • Cassel, W. A.: Apparent fusion of chromatinic bodies in a species of bacillus. J. Bact. 62, 514–515 (1951).

    PubMed  CAS  Google Scholar 

  • Cavallo, G., e F. D’Onofrro: Polimorfismo batterico da trietilenmelammina. Giorn. Microbiol. 1, 115–122 (1955).

    Google Scholar 

  • Cavallo, G., e G. Falcone: Perossidi e filamentizzazione batterica. R. c. Accad. Lincei, Ser. Viii, Cl. di Sci. fis., math. e natur. 15, 234–236 (1953).

    CAS  Google Scholar 

  • Challice, C. E., and R. H. GoRrh.• Some observations on the morphological changes in E. coli accompanying induction by ultraviolet light. Biochim. biophys. Acta 14, 482 487 (1954).

    Google Scholar 

  • Chaplin, C. E.: Cytological changes in bacillus species in stasis and death caused by quaternary ammonium compounds. J. Bact. 64, 805–810 (1952).

    CAS  Google Scholar 

  • Chapman, G. B., and J. Hu u E • Electron microscopy of ultra-thin sections of bacteria. L Cellular division in Bacillus cereus. J. Bact. 66, 362–373 (1953).

    Google Scholar 

  • Charney, J., W. P. Fischer and C. P. Hegarty: Manganese as an essential element for sporulation in the genus Bacillus. J. Bact. 62, 145–148 (1951).

    PubMed  CAS  Google Scholar 

  • Clark, F. E., and C. A. I. Goring: Growth of bacteria in the presence of radioactive phosphorus. J. Bact. 62, 352–354 (1951).

    PubMed  CAS  Google Scholar 

  • Clark, P. F., and W. H. Ruebr.: Morphological changes during the growth of bacteria. J. Bact. 4, 615–629 (1919).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., and H. D. Barner: Studies on unbalanced growth in Escherichia col:. Proc. nat. Acad. Sci. (Wash.) 30, 885 (1954).

    Google Scholar 

  • Cohen, S. S., and H. D. Barner: Enzymatic adaptation in a thymine-requiring strain of Escherichia coli. J. Bac. 69, 59–66 (1955).

    CAS  Google Scholar 

  • Cohen, S. S., and H. D. Barner: Studies on the induction of thymine deficiency and on the effects of thymine and thymidine analogues in Escherichia coli. J. Bact. 71, 588–597 (1956).

    PubMed  CAS  Google Scholar 

  • Conway, B. E., and J. A. V. Butler: The action of ionizing radiations and of radiomimetic substances on deoxyribonucleic acid. V. Some experiments on the action of X-rays and free radicals. J. chem. Soc. 1952, 834 838.

    Google Scholar 

  • Coos, R. P.: Bacterial spores. Biol. Rev. 7, 1–23 (1932).

    Google Scholar 

  • Cooper, P. D.: The site of action of penicillin; some properties of the penicillin binding component of Staphylococcus aureus. J. gen. Microbiol. 12, 100–106 (1955a).

    PubMed  CAS  Google Scholar 

  • Cooper, P. D.: The site of action of penicillin• some changes in Staphylococcus aureus during the first two hours growth in penicillin media. J. gen. Microbiol. 13, 22–38 (1955 b).

    Google Scholar 

  • Cooper, P. D.: Site of action of radiopenicillin. Bact. Rev. 20, 28–48 (1956).

    PubMed  CAS  Google Scholar 

  • Cooper, P. D., and D. Rowley: Investigations with radioactive penicillin Nature (Lond.) 163, 480–481 (1949).

    CAS  Google Scholar 

  • Cornil, L., et A. Stahl: Essai d’interprétation histochimique de la radiosensibilité des tissus normaux et néoplasiques. Rôle des acides nucléiques. Presse méd. 59, 933–935 (1951).

    PubMed  CAS  Google Scholar 

  • Cortelyou, J. R., L. M. Amundson and M. A. Mcweinnie: A phase contrast study of the chromatinic bodies of Escherichia coli subsequent to ultraviolet irradiation. J. Bact. 71, 462–473 (1956).

    PubMed  CAS  Google Scholar 

  • Cowie, D. B., R. B. Roberts and I. Z. Roberts: Potassium metabolism in Escherichia coli. I. Permeability to sodium and potassium ions. J. cell. comp. Physiol. 43, 243–257 (1949).

    Google Scholar 

  • Cox, R. A., W. G. Overend, A. R. Peacocke and S. Wilson: Effects of Gamma-rays on solutions of sodium deoxyribonucleate. Possible chemical mechanism for their biological effects. Nature (Lond.) 176, 919–921 (1955).

    CAS  Google Scholar 

  • Crofts, J. E., and D. G. Evans: Actions of penicillin on Cl. welchii, type A. Brit. J. exp. Path. 31, 550–561 (1950).

    CAS  Google Scholar 

  • Cummins, C. S., and H. Harris: The chemical composition of the cell wall in some Gram-positive bacteria and its possible value as a toxonomic character. J. gen. Microbiol. 14, 583–600 (1956).

    PubMed  CAS  Google Scholar 

  • Curran, H. R., and F. R. Evans: The influence of iron and manganese upon the formation of spores by mesophilic aerobes in fluid organic media. J. Bact. 67, 489–497 (1954).

    PubMed  CAS  Google Scholar 

  • Dagley, S., and E. A. Dawes: Factors influencing the polysaccharide content of Escherichia coli. Biochem. J. 45, 331–337 (1949).

    PubMed  CAS  Google Scholar 

  • Dagley, S., E. A. Dawes and G. A. MoRrison: Influence of amino acids and compounds in the Krebs oxidation cycle on: Influence of amino acids and compounds in the Krebs oxidation cycle on “early lag”. (Abstr.) Biochem. J. 45, xxvi (1949).

    Google Scholar 

  • D’Arcy-Hart, P., and R. J. W. Rees: Changes in morphology of an avirulent strain of Mycobacterium tuberculosis under the influence of nonionic surface active agents. J. gen. Microbiol. 10, 150–159 (1954).

    Google Scholar 

  • Davies, R., J. P. FoLsES, E. F. Gale and L. C. Bigger: Assimilation of amino acids by micro-organisms. Xvi. Changes in sodium and potassium accompanying the accumulation of glutamic acid and lysine by bacteria and yeast. Biochem. J. 54, 430 437 (1953).

    Google Scholar 

  • Davies, D. S., C. N. Hinshelwood and J. M. Price: Studies on the mechanism of bacterial adaptation. Trans. Faraday Soc. 40, 397–419 (1944).

    CAS  Google Scholar 

  • Davis, J. C., and S. MuDD: Cytological effects of ultraviolet radiation and azaserine on Corynebacterium diphtheriae. J. gen. Microbiol. 14, 527–532 (1956).

    Google Scholar 

  • Dawson, I. M., and H. Stern: Changes in the bacterial cell wall during cell dissociation as seen in the electron microscope. (Abstr.) J. gen. Microbiol. 10, iii (1954a).

    Google Scholar 

  • Dawson, I. M., and H. Stern: Structure of the bacterial cell wall during division. Biochim. biophys. Acta 13, 31–40 (1954b).

    CAS  Google Scholar 

  • Debruyn, P. P. H., R. S. Farr, H. Banks and F. W. Morthland: In vivo and in vitro affinity of diaminoacidines for nucleoproteins. Exp. Cell Res. 4, 174–180 (1953).

    Google Scholar 

  • Dedic, G. A., and O. G. Koch: Aerobic cultivation of Clostridium tetani in the presence of cobalt. J. Bact. 71, 126 (1956).

    PubMed  CAS  Google Scholar 

  • Deering, R. A., and R. B. Setlow: Inhibition of cell division of Escherichia coli by low doses of ultraviolet light. Science 126, 397–398 (1957).

    PubMed  CAS  Google Scholar 

  • Deibel, R. H., M. Downing, C. F. Nivela and B. S. Schweigert: Filament formation by Lactobacillus leichmanii when desoxyribosides replace vitamin B12 in the growth medium. J. Bact. 71, 255–256 (1956).

    PubMed  CAS  Google Scholar 

  • Delamater, E. D.: Bacterial chromosomes and their mechanism of division. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 215–260. Cambridge: Univ. Press 1956.

    Google Scholar 

  • Delaporte, B.: Observations on the cytology of bacteria. Advanc. Genet. 3, 1–32 (1950).

    CAS  Google Scholar 

  • Dienes, L.: Isolation of L-type colonies from typhoid bacilli with the aid of penicillin. Proc. Soc. exp. Biol. (N.Y.) 68, 589–590 (1948).

    CAS  Google Scholar 

  • Dienes, L.: L-type cultures isolated from streptococci. Proc. Soc. exp. Biol. (N. Y.) 83, 579–583 (1953).

    CAS  Google Scholar 

  • Dienes, L., and J. T. Sharp: The role of high electrolyte concentration in the production and growth of L-forms of bacteria. J. Bact. 71, 208–213 (1956).

    PubMed  CAS  Google Scholar 

  • Dienes, L., and P. C. Zamecnik: Transformation of bacteria into L-forms by amino-acids. J. Bact. 64, 770–771 (1952).

    PubMed  CAS  Google Scholar 

  • Doudney, C. O.: Restoration from an X-ray induced block in deoxyribonucleic acid synthesis in Escherichia coli. J. Bact. 72, 488–493 (1956).

    PubMed  CAS  Google Scholar 

  • Dubos, R. J.: The bacterial cell. Cambridge, Mass.: Harvard Univ. Press 1945.–Dufrenoy, J., and R. Pratt: Cytochemical mechanism of penicillin action. Iii. Effect on reaction to Gram stain of Staphylococcus aureus. J. Bact. 54, 283–289 (1947).

    Google Scholar 

  • Duguid, J. P.: The influence of cultural conditions on morphology of Bacterium aerogenes with reference to nuclear bodies and capsule sizes. J. Path. Bact. 60, 265–274 (1948).

    PubMed  CAS  Google Scholar 

  • Duguid, J. P., I. W. Smith and J. F. Wilkinson: Volutin production in Bacterium aerogenes due to development of an acid reaction. J. Path. Bact. 67, 289–300 (1954).

    PubMed  CAS  Google Scholar 

  • Dunn, D. B., and J. D. Smith: Incorporation of halogenated pyrimidines into deoxyribonucleic acids of Bacterium coli and its bacteriophages. Nature (Lond.) 174, 305–306 (1954).

    CAS  Google Scholar 

  • Dunn, D. B., and J. D. Smith: Occurrence of a new base in deoxyribonucleic acid of a strain of B. coli. Nature (Lond.) 175, 336–337 (1955).

    CAS  Google Scholar 

  • Dunn, D. B., and J. D. Smith: Effect of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem. J. 67, 494–506 (1957).

    PubMed  CAS  Google Scholar 

  • Durham, N. W., and O. Wyss: An example of non-inherited radiation resistance. J. Bact. 72, 95–100 (1956).

    PubMed  CAS  Google Scholar 

  • Eagle, H., M. Levy and R. Fleischman; Binding of penicillin in relation to its cytotoxic action. IV. The amount bound by bacteria at ineffective, growth-inhibitory, bactericidal and maximally effective concentrations. J. Bact. 69, 167–176 (1955).

    PubMed  CAS  Google Scholar 

  • Eddy, A. A., and C. N. Hinshelwood: Alkali-metal ions in metabolism of Bact. lattis aerogenes. Proc. roy. Soc. B 138, 228–237 (1951a).

    CAS  Google Scholar 

  • Eddy, A. A., and C. N. Hinshelwood: Alkali metal ions in the metabolism of Bact. lactic aerogenes. Proc. roy. Soc. B 138, 237–240 (1951 b).

    Google Scholar 

  • Edwards, D. G. FF: A difference in growth requirements between bacteria in the L-phase and organisms of the pleuropneumonia group. J. gen. Microbiol. 8, 256–262 (1953).

    Google Scholar 

  • Ehrlich, R.: Induced filament formation and color variations in a strain of Serratia marcescens. J. Bact. 68, 752–755 (1954).

    PubMed  CAS  Google Scholar 

  • Eisenstark, R. A., and G. L. Clark • Electron micrographs of X-ray treated Escherichia coli cells. Science 105, 553–555 (1947).

    Google Scholar 

  • Ellison, S. A., B. F. Erlanger and P. Allen: The chemical reversal of ultra-violet effects in bacteria. J. Bact. 69, 536–540 (1955).

    PubMed  CAS  Google Scholar 

  • Ellner, P. D.: A medium promoting rapid quantitative sporulation in Clostridium perfringens. J. Bact. 71, 495–496 (1956).

    PubMed  CAS  Google Scholar 

  • Ellner, P. D., and A. G. SnumH: Observations on the sporulation process in Clostridium perfringens. J. Bact. 73, 1–7 (1957).

    Google Scholar 

  • Ephrussxtaylor, H., et R. Latarjet: Inactivation par les rayons X, d’un transformant facteur du pneumocoque. Biochim. biophys. Acta 16, 183–197 (1955).

    Google Scholar 

  • Errera, M.: Induction par les rayons ultra-violettes de formes filamenteuses dans des cultures de Escherichia coli B. Arch. int. Physiol. 61, 257–258 (1953 a).

    Google Scholar 

  • Errera, M.: Effect of different agents on ultraviolet irradiated Escherichia coli. Trans. Faraday Soc. 49, 323–334 (1953b).

    Google Scholar 

  • Eyring, H., F. H. Johnson and R. L. Gensler: Pressure and reactivity of proteins, with particular reference to invertase. J. phys. Chem. 50, 453–464 (1946).

    PubMed  CAS  Google Scholar 

  • Falcone, G.: Polimorfismo batterico da metil bis (beta-cloroetilamina) Boll. Ist. sieroter. milan. 32, 339–344 (1953).

    CAS  Google Scholar 

  • Flannery, W. L.: Current status of knowledge of halophilic bacteria. Bact. Rev. 20, 49–66 (1956).

    PubMed  CAS  Google Scholar 

  • Fleming, A., A. Voureka, I. R. H. Kramer and W. H. Hughes: The morphology and motility of Proteus vulgaris and other organisms cultured in the presence of penicillin. J. gen. Microbiol. 4, 257–269 (1950).

    PubMed  CAS  Google Scholar 

  • Foster, J. W., and F. Heiligman: Mineral deficiencies in complex organic media as limiting factors in the sporulation of aerobic bacilli. J. Bact. 57, 613–615 (1949).

    PubMed  CAS  Google Scholar 

  • Foster, J. W., and R. F. Pittillo: Metabolite reversal of antibiotic inhibition, especially reversal of aureomycin inhibition by riboflavin. J. Bact. 66, 478–486 (1953).

    PubMed  CAS  Google Scholar 

  • Foster, R. A. C.: An analysis of the action of proflavine on bacterial growth. J. Bact. 56, 795–809 (1948).

    PubMed  CAS  Google Scholar 

  • Frame, H., B. E. Proctor and C. G. Dunn: Effects of X-rays produced at 50-kilovolts on different species of bacteria. J. Bact. 60, 263–269 (1950).

    Google Scholar 

  • Frazier, C. N., and E. H. Frieden: Action of penicillin, especially on Treponema pallidum. J. Amer. med. Ass. 130, 677–683 (1946).

    CAS  Google Scholar 

  • Friedman, S. and C. L. Fox: Studies on the relationship of potassium to metabolism and purine biosynthesis in Escherichia coli. J. Bact. 68, 186–193 (1954).

    PubMed  CAS  Google Scholar 

  • Gale, E. F.: The assimilation of amino acids by bacteria. L The passage of certain amino acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 53–76 (1947 a).

    Google Scholar 

  • Gale, E. F.: Correlation between penicillin resistance and assimilation affinity in Staphylococcus aureus. Nature (Lond.) 160, 407–408 (1947b).

    CAS  Google Scholar 

  • Gale, E. F.: Nitrogen metabolism of Gram positive bacteria. Bull. Johns Hopk. Univ. 83, 119–175 (1948).

    CAS  Google Scholar 

  • Gale, E. F.: The assimilation of amino acids by bacteria. 8. Trace metals in glutamic acid assimilation and their inactivation by 8-hydroxyquinoline. J. gen. Microbiol. 3, 369–386 (1949).

    PubMed  CAS  Google Scholar 

  • Gale, E. F.: Organic nitrogen. In: Bacterial physiology (C. H. Werkman and P. W. Wilsow, eds.), pp. 429–466. New York: Acad. Press 1951.

    Google Scholar 

  • Gale, E. F.: The action of antibiotics on the incorporation of glutamic acid into the protein of Staphylococcus aureus. J. gen. Microbiol. 8, vii (1953).

    Google Scholar 

  • Gale, E. F., and H. M. R. Epps: The effect of the pH of the medium during growth on the enzymic activities of bacteria (E. coli and M. lysodeikticus) and the biological significance of the changes produced. Biochim. J. 36, 600–618 (1942).

    CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: Assimilation of amino acids by bacteria. XV. Action of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 492–498 (1953).

    Google Scholar 

  • Gale, E. F., and P. Mitchell: The assimilation of amino acids by bacteria. IV. The action of triphenylmethane dyes on glutamic acid assimilation. J. gen. Microbiol. 1, 299–313 (1947).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and T. F. Payne: Effect of inhibitors and antibiotics on glutamic acid accumulation and on protein synthesis in Staphylococcus aureus. (Abstr.) Biochem. J. 47, xxvi (1950).

    Google Scholar 

  • Gale, E. F., and P. W. Rodwell• Amino acid metabolism of penicillin resistant staphylococci. J. Bact. 55, 161–167 (1948).

    Google Scholar 

  • Gale, E. F., and E. S. Taylor: The assimilation of amino acids by bacteria. II. The action of tyrocidin and some detergent substances in releasing amino acids from the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 77–84 (1947).

    PubMed  CAS  Google Scholar 

  • Gardner, A. D.: Morphological effects of penicillin on bacteria. Nature (Lond.) 146, 837–838 (1940).

    Google Scholar 

  • Gates, F.: Th: reaction of individual bacteria to irradiation with UV light. Science 77, 350 (1933).

    PubMed  CAS  Google Scholar 

  • Gibson, F., B. Mcdouaall, M. T. Jones and H. Teltscher: The action of antibiotics on indole synthesis by cell suspensions of Escherichia coli. J. gen. Microbiol. 15, 446 458 (1956).

    Google Scholar 

  • Gladstone, G. P.: Interrelationships between amino acids in the nutrition of B. anthracis. Brit. J. exp. Path. 20, 189–200 (1939).

    CAS  Google Scholar 

  • Gordon, J., and M. Gordon: Involution forms of the genus Vibrio produced by glycine. J. Path. Bact. 55, 63–68 (1943).

    CAS  Google Scholar 

  • Gray, L. H.: Biological actions of ionizing radiations. Progr. Biophys. 2, 240–305 (1951).

    CAS  Google Scholar 

  • Grossowicz, N., P. Hayat and Y. S. Halpern: Pyocyanin biosynthesis by Pseudomonas aeruginosa. J. gen. Microbiol. 16, 576–583 (1957).

    PubMed  CAS  Google Scholar 

  • Giinsalus, I. C.: Growth of bacteria. In: Bacterial physiology (C. N. Werkman and P. W. Wilson, eds.), pp. 101–125. New York: Acad. Press 1951.

    Google Scholar 

  • Haberman, S., and L. D. Ellsworth: Lethal and dissociation effects of X-rays on bacteria. J. Bact. 40, 483–503 (1940).

    PubMed  CAS  Google Scholar 

  • Hahn, F. E., and J. Ciak: Penicillin induced lysis of Escherichia coli. Science 125, 119–120 (1957).

    PubMed  CAS  Google Scholar 

  • Hahn, F E, and C. L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. exp. Biol. (N. Y.) 76, 533–535 (1951).

    CAS  Google Scholar 

  • Hahn, F. E., C. L. Wisseman and H. E. HoPrs: Mode. of action of chloramphenicol. Iii. Action of chloramphenicol on bacterial energy metabolism. J. Bact. 69, 215–223 (1955).

    PubMed  CAS  Google Scholar 

  • Hampil, B.: The influence of temperature on the life processes and death of bacteria. Quart. Rev. Biol. 7, 172–196 (1932).

    CAS  Google Scholar 

  • Hansen, E. C.: Recherches sur les bactéries acétifiantes. C. R. Lab. Carlsberg 3, 182–216 (1894).

    Google Scholar 

  • Hartman, P. E., J. I. Payne and S. Mudd: Cytological analysis of ultra-violet irradiated E. coli. I. Cytology of lysogenic E. coli and non-lysogenic derivative. J. Bact. 70, 531–539 (1955).

    PubMed  CAS  Google Scholar 

  • Hart-Man, P. E., J. I. Payne, S. Mudd and C. Liu: Nuclear changes in ultra-violet induced E.coli K 12, and a non-lysogenic mutant W 1485. ( Abstr.) Bact. Proc. 1954, 38.

    Google Scholar 

  • Hart-Man, P. E., J. I. Payne, S. Mudd and C. Liu: Cytological analysis of ultraviolet irradiated E. coli. II. Ultraviolet induction of lysogenic E. coli. J. Bact. 70, 539–546 (1955).

    Google Scholar 

  • Hatano, M.: Effect of iron concentration in the medium on phage and toxin production in a lysogenic, virulent Corynebacterium diphtheriae. J. Bact. 71, 121–124 (1956).

    PubMed  CAS  Google Scholar 

  • Headlee, M.: Thermal death point. Iii. Spores of Clostridium welchii. J. infect. Dis. 48, 468–483 (1931).

    Google Scholar 

  • HedÉx, C.-G.: Studies on the infection of Each. col with the bacteriophage T2. Acta path. microbiol. scand., Suppl. No. 88 (1951). Van Heyningen see under V.

    Google Scholar 

  • Heinmets, F.: Reactivation of ultraviolet inactivated Escherichia coli by pyruvate. J. Bact. 66, 455–457 (1953).

    PubMed  CAS  Google Scholar 

  • Heinmets, F., J. J. Lehman, W. W. Taylor and R. H. Kathan: Factors which influence metabolic reactivation of the ultraviolet inactivated Escherichia coli. J. Bact. 67, 511–522 (1954).

    PubMed  CAS  Google Scholar 

  • Heinmets, F., W. W. Taylor and J. J. Lehman • The use of metabolites in the restoration of the viability of heat and chemically inactivated Escherichia coli. J. Bact. 67, 5–12 (1954).

    Google Scholar 

  • Heinzel, E.: Experimentelle Untersuchungen zur Ausbildung von Faden-und Kettenformen bei Bacterium prodigiosum. Arch. Mikrobiol. 15, 119–136 (1950).

    CAS  Google Scholar 

  • Henrici, A. T.: On cytomorphosis in bacteria. Science 61, 644–647 (1925).

    PubMed  CAS  Google Scholar 

  • Henrici, A. T.: Morphologic variations and the rate of growth bacteria. (Microbiology monographs, Vol. 1.) Baltimore 1928.

    Google Scholar 

  • Herriott, R.: Nucleic acid synthesis in mustard gas-treated E. coli B. J. gen. Physiol. 34, 761–764 (1951).

    PubMed  CAS  Google Scholar 

  • Hevesy, G.: Effect of X-rays on the incorporation of radioactive carbon into deoxyribonucleic acid. Nature (Lond.) 163, 869 (1949).

    CAS  Google Scholar 

  • Hewitt, L. F.: Effect of cultural conditions on bacterial cytology. J. gen. Microbiol. 5, 293–297 (1951).

    PubMed  CAS  Google Scholar 

  • Hills, G. M., and E. D. Spurr: The effect of temperature on the nutritional requirements of Pasteurella pestis. J. gen. Microbiol. 6, 64–73 (1952).

    PubMed  CAS  Google Scholar 

  • HIxGlais, H., M. Hinglais et Y. M. Langlade: Contribution it l’étude du mécanisme de l’action des antibiotiques. Presse méd. 63, 989–991 (1955).

    Google Scholar 

  • Hinshelwood, C. N.: The chemical kinetics of the bacterial cell. Oxford: Clarendon Press 1946.

    Google Scholar 

  • Hinshelwood, (Sir) C. N.: On the chemical kinetics of autosynthetic systems. J. chem. Soc. 1952, 745–755.

    Google Scholar 

  • Hinshelwood, (Sir) C. N.: Autosynthesis. J. chem. Soc. 1953, 1947–1956.

    Google Scholar 

  • Hopps, H. E., C. L. Wisseman, F. E. Hahn, J. E. Smadel and R. Ho: Mode of action of chloramphenicol. IV. Failure of selected natural metabolites to reverse antibiotic action. J. Bact. 72, 561–567 (1956).

    PubMed  CAS  Google Scholar 

  • Hotchkiss, R. D.: Abnormal course of bacterial protein synthesis in the presence of penicillin. J. exp. Med. 91, 351–364 (1950).

    PubMed  CAS  Google Scholar 

  • Hughes, W. H.: The differences in antibiotic sensitivity of closely related single cells of Proteus vulgaris. J. gen. Microbiol. 12, 269–274 (1955).

    PubMed  CAS  Google Scholar 

  • Hughes, W. H.: The structure and development of induced long forms in bacteria. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 341–360. Cambridge: Univ. Press 1956.

    Google Scholar 

  • Hunter-Szybalska, M. E., W. Szybalski and D. E. Delamater: Temperature synchronization of nuclear and cellular division in Bacillus megaterium. J. Bact. 71, 17–24 (1956).

    Google Scholar 

  • Huntington, E., and C. E. A. WinsLow: Cell size and metabolic activity at various phases of the bacterial culture cycle. J. Bact. 33, 123–144 (1937).

    PubMed  CAS  Google Scholar 

  • Jahlons, B.: Studies on pathogenic anaerobes. I. Bacillus welchii. J. Lab. clin. Med. 5, 374–383 (1920).

    Google Scholar 

  • James, A. M., and C. N. Hinshelwood: Morphology of Bact. lactis aerogenes. Trans. Faraday Soc. 43, 758–762 (1947).

    CAS  Google Scholar 

  • Jeener, R.: Ribonucleic acid and protein synthesis in continuous cultures of Polytomella caeca. Arch. Biochem. 43, 381–388 (1953).

    PubMed  CAS  Google Scholar 

  • Jeener, H., and R. Jeener: Cytological study of Thermobacterium acidophilis R 26 cultivated in the absence of deoxyribonucleosides or uracil. Exp. Cell Res. 3, 675–680 (1952).

    CAS  Google Scholar 

  • Johnstone, K. I., J. E. Crofts and D. G. Evans: Single cell culture of Cl. welchii, type A, morphologically changed by penicillin. Brit. J. exp. Path. 31, 562–565 (1950).

    PubMed  CAS  Google Scholar 

  • Kanizar, D.: Accumulation de deoxyguanosine chez E. coli B après irradiation U.V. Biochim. biophys. Acta 15, 592–593 (1954a).

    Google Scholar 

  • Kanizar, D.: Accumulation d’acide thymidylique chez E. coli B après irradiation U.V. Biochim. biophys. Acta 13, 589–590 (1954b).

    Google Scholar 

  • Kanizar, D., et M. Errera: Métabolisme des acides nucléiques chez E. coli B après irradiation ultraviolette. Biochem. biophys. Acta 14, 62–66 (1954).

    Google Scholar 

  • Kanizar, D., et M. Errera: Métabolisme anaérobique de l’adenosine triphosphate et de l’acide desoxyribonucléique chez E. coli après irradiation U.V. Biochim. biophys. Acta 16, 477–481 (1955).

    Google Scholar 

  • Katchman, B. J., E. Spoerl and H. E. Smith: Effect of cell division inhibition on phosphorus metabolism by Escherichia coli. Science 121, 97–98 (1955).

    PubMed  CAS  Google Scholar 

  • Katznelson, H.: Studies with Bacillus polymyxa. V. Potassium as a factor in the production of 2: 3-butane-diol from starch. Canad. J. Res., C 25, 129 (1947).

    CAS  Google Scholar 

  • Kellenberger, E.: Les formes charactéristiques des nucléosides de E. coli et leur transformations dues à l’action d’agents mutagènes, inducteurs et de bacteriophages. 6th Internat. Congr. Microbiol. (Rome), 2nd Symp.: Bacterial cytology, pp. 45–66, 1953.

    Google Scholar 

  • Kellenberger, E.: Les transformations des nucléosides de Escherichia coli déclenchées par des rayons X. Experientia (Basel) 11, 305–307 (1955).

    CAS  Google Scholar 

  • Kellenberger, E., et A. Ryter: Contribution à l’étude du noyau bactérien. Schweiz. Z. allg. Path. 18, 1122 (1955).

    CAS  Google Scholar 

  • Kelner, A.: Photo-reactivation of ultraviolet irradiated Escherichia coli with special reference to the dose-reduction principle and to ultraviolet induced mutation. J. Bact. 58, 511–522 (1949).

    PubMed  CAS  Google Scholar 

  • Kelner, A.: Growth, respiration and nucleic acid synthesis in ultra-violet irradiated and in photoreactivated Escherichia coli. J. Bact. 65, 252–262 (1953).

    PubMed  CAS  Google Scholar 

  • Kent, H. L.: The structure of muramic acid. Biochem. J. 67, 5P (1957).

    Google Scholar 

  • Knaysi, G.: Elements of bacterial cytology. 2nd edn. Ithaca, N. Y.: Comstock 1951(a).

    Google Scholar 

  • Knaysi, G.:The structure of the bacterial cell. In: Bacterial physiology (C. H. Werkman and P. W. Wilson, eds.), pp. 28–66. New York: Acad. Press 1951(b).

    Google Scholar 

  • Knaysi, G., and R. F. Baker: Demonstration with the electron microscope of a nucleus in Bacillus mycoides grown in a nitrogen-free medium. J. Bact. 53, 539–553 (1947).

    PubMed  CAS  Google Scholar 

  • Knight, B. C. J. G.: Bacterial nutrition. Material for a comparative physiology of bacteria. Medical Research Council (G. B.), Special Rep. Ser. No. 210, 1938.

    Google Scholar 

  • Knight, B. C. J. G.: Growth factors in microbiology. Vitam. and Horm. 3, 105–228 (1945).

    CAS  Google Scholar 

  • Knight, S. G.: Mineral metabolism. In: Bacterial physiology (C H Werkman and P. W. Wilson, eds.), pp. 500–516. New York: Acad. Press 1951.

    Google Scholar 

  • Kushner, D. J.: Action of chloramphenicol on oxidation of succinate and related compounds by Pseudomonas fluorescens. Arch. Biochem. 58, 332–346 (1955).

    PubMed  CAS  Google Scholar 

  • Lardy, H. A.: The influence of inorganic ions on phosphorylation reactions. In: Phosphorus metabolism (W. D. Mcelroy and B. Glass, eds.), vol. I, pp. 477–499. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Latarjet, R.: Chemical restorations in some irradiated micro-organisms. Transact. Faraday Soc. 49, 323–334 (1953).

    Google Scholar 

  • Latarjet, R., and L. R. Caldis: Restoration induced by catalase in irradiated microorganisms. J. gen. Physiol. 35, 455–470 (1952).

    PubMed  CAS  Google Scholar 

  • Lea, D. E.: Actions of radiations on living cells. Cambridge: Univ. Press 1955.

    Google Scholar 

  • Lea, D. E., R. B. Haines and C. A. Coulson: The action of radiations on bacteria. Proc. roy. Soc. B 123, 1–21 (1937).

    Google Scholar 

  • Lederberg, J.: Inheritance, variation and adaptation. In: Bacterial physiology (C. H. Werkman and P. W. Wilson, eds.), pp. 68–100. New York: Acad. Press 1951.

    Google Scholar 

  • Lederberg, J.: Bacterial protoplasts induced by penicillin. Proc. nat. Acad. Sci. (Wash.) 42, 574–577 (1956).

    CAS  Google Scholar 

  • Lederberg, J.: Mechanism of action of penicillin. J. Bact. 73, 144 (1957).

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L.: Role of metal ions in enzyme systems. Physiol. Rev. 30, 393–429 (1950).

    PubMed  CAS  Google Scholar 

  • Levinson, H. S., and M. T. Hyatt: The stimulation of germination and respiration of Bacillus megaterium spores by manganese, L-alanine and heat. J. Bact. 70, 368–374 (1955).

    PubMed  CAS  Google Scholar 

  • Levinson, H. S., and M. G. Sevag: Stimulation of germination and respiration of the spores of Bacillus megaterium by manganese and monovalent anions. J. gen. Physiol. 36, 617–629 (1953).

    PubMed  CAS  Google Scholar 

  • Levinson, H. S., and M. G. Sevag: Manganese and proteolytic activity of spore-extracts of Bacillus megaterium in relation to germination. J. Bact. 67, 615–616 (1954).

    PubMed  CAS  Google Scholar 

  • Levy, H. B., E. T. Skutch and A. L. Schade: The effect of cobalt on the relationship between nucleic acid concentration and growth rate in Proteus vulgaris. Arch. Biochem. 24, 199–205 (1949).

    PubMed  CAS  Google Scholar 

  • Liebermeister, K., u. E. Kellenberger: Studien zur L-Form der Bakterien. I. Die Umwandlung der bazillären in die globuläre Zellform bei Proteus unter Einfluß von Penicillin. Z. Naturforsch. 11B, 200–206 (1956).

    Google Scholar 

  • Lodge, R. M., and C. N. Hinsrelwood: Some morphological and other variations in a strain of Bact. lactis aerogenes accompanying its adaptation to change in medium. Transact. Faraday Soc. 39, 420–424 (1943).

    CAS  Google Scholar 

  • Loveless, L. E., E. Spoerl and T. H. Weisman: Effect of chemicals on division and growth of yeast and Escherichia coli. J. Bact. 68, 637–644 (1954).

    PubMed  CAS  Google Scholar 

  • Luria, S.: Action des radiations sur le Bacterium coli. C. R. Acad. Sci. (Paris) 209, 604–606 (1939).

    Google Scholar 

  • Lwoff, A., et H. IoxESco: L’ion potassium et la croissance de la bactérie Moraxella lwof fi. Ann. Inst. Pasteur 79, 14–19 (1950).

    CAS  Google Scholar 

  • Maaloe, O., and A. Birch-Andersen: On the organization of nuclear material in Salmonella typhimurium. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 261–278. Cambridge: Univ. Press 1956.

    Google Scholar 

  • Maas, E. A., and M. L. Johnson: Penicillin-uptake by bacterial cells. J. Bact. 57, 415–422 (1949).

    Google Scholar 

  • McilwAin, H.: A nutritional investigation of the action of acriflavine. Biochem. J. 35, 1311–1319 (1941).

    Google Scholar 

  • Macleod, R. A., and E. E. Snell: Some mineral requirements of the lactic acid bacteria. J. biol. Chem. 170, 351–365 (1947).

    CAS  Google Scholar 

  • Macleod, R. A., and E. E. Snell: The effect of related ions on the potassium requirement of lactic acid bacteria. J. biol. Chem. 176, 39–52 (1948).

    PubMed  CAS  Google Scholar 

  • Macleod, R. A., and E. E. Snell: Ion antagonism in bacteria in relation to antimetabolites. Ann. N. Y. Acad. Sci. 52, 1249 (1950a).

    PubMed  CAS  Google Scholar 

  • Macleod, R. A., and E. E. Snell: Relation of ion antagonism to inorganic nutrition of lactic acid bacteria. J. Bact. 59, 783–792 (1950 b).

    Google Scholar 

  • Mcnair-Scott, D. B., and E. D. Delamater: Sequence of synthesis of nucleic acid components in synchronized cultures of E. coli B and Bacillus megaterium. Bact. Proc. 1956, 123.

    Google Scholar 

  • Magni, G.: Variazioni di resistenza ai raggi X e ultravioletti in Escherichia coli. II. Il luogo d’azione dei raggi ultravioletti. Ric. sci. 22, 1578–1588 (1952).

    Google Scholar 

  • Malmgren, B., and C.-G. Heden: Studies on the nucleotide metabolism of bacteria. Acta path. microbiol. scand. 24, 417–504 (1947).

    Google Scholar 

  • Mandel, H. G.: Incorporation of 8-azaguanine and growth-inhibition in Bacillus cereus. J. biol. Chem. 225, 137–150 (1957).

    PubMed  CAS  Google Scholar 

  • Mandel, H. G., and R. Markham• The replacement of guanine by 8-azaguanine during nucleic acid biosynthesis in Bacillus cereus. Biochem. J. 65, 25P (1956).

    Google Scholar 

  • Mandel, H. G., G. I. Sugerman and R. A. After: Fractionation studies of Bacillus cereus containing 8-azaguanine. J. biol. Chem. 225, 151–156 (1957).

    PubMed  CAS  Google Scholar 

  • Maruyama, Y • Biochemical aspects of cell growth of Escherichia coli as studied by the method of synchronous culture. J. Bact. 72, 821–826 (1956).

    PubMed  CAS  Google Scholar 

  • Maruyama, Y., and T. Yanagita: Physical methods for obtaining synchronous cultures of Escherichia coli. J. Bact. 71, 542–546 (1956).

    PubMed  CAS  Google Scholar 

  • Massart, L.: The biochemical action of acridine derivatives. [In Dutch.] Ned. T. Geneesk. 91, 3192 (1947).

    CAS  Google Scholar 

  • Massart, L., G. Peeters and A. Van Houcke: The uptake of acridines by yeast cells with considerations of the biochemical behaviour of acridines. Arch. int. Pharmacodyn. 75, 210–221 (1947).

    Google Scholar 

  • Massart, L., G. Peeters, A. Van Houcke and A. Lagrain: The uptake of acridines by cell substances. Arch. int. Pharmacodyn. 75, 141–143 (1947).

    CAS  Google Scholar 

  • Matthews, R. E. F., and J. D. Smith: Distribution of 8-azaguanine in the nucleic acids of Bacillus cereus. Nature (Lond.) 177, 271 (1956).

    CAS  Google Scholar 

  • Maxwell, R. E., and V. S. Nickel: Filament formation in Escherichia coli induced by azaserine and other neoplastic agents. Science 120, 270–271 (1954).

    PubMed  CAS  Google Scholar 

  • Meier, K. E.: Einfluß von Colchicin auf Bakterien. Naturwiss. 42, 183 (1955).

    CAS  Google Scholar 

  • Miki, K.: Photoreactivation of N-mustard treated Escherichia coli. Wakayama med. Rep. 2, 15–23 (1954).

    CAS  Google Scholar 

  • Minsavage, E. J., and E. D. Delamater: The effect of colchicine upon the mitotic cycle of Salmonella typhosa. ( Abstr.) Bact. Proc. 1954, 41.

    Google Scholar 

  • Minsavage, E. J., and E. D. Delamater:Some observations on the effect of colchicine upon Salmonella typhosa. J. Bact. 70, 501–509 (1955).

    Google Scholar 

  • Mitchell, P. D.: The osmotic barrier in bacteria. In: The nature of the bacterial surface (A. A. Miles and N. W. Pirie, eds.), pp. 55–75. Oxford: Blackwell Scientif. Public. 1949 a.

    Google Scholar 

  • Mitchell, P. D.: Spectrophotometric estimation of nucleic acid in bacterial suspensions. J. gen. Microbiol. 4, 399–409 (1949b).

    Google Scholar 

  • Mitchell, P. D.: Physical factors affecting growth and death. In: Bacterial physiology (C. H. Werkman and P. W. WilsoN, eds.), pp. 127–177. New York: Academic Press 1951.

    Google Scholar 

  • Mitchell, P., and J. Moyle: Relationship between cell growth, surface properties and nucleic acid production in normal and penicillin-treated Micrococcus pyogenes. J. gen. Microbiol. 5, 421–438 (1951).

    PubMed  CAS  Google Scholar 

  • Moltke, O.: Contributions to the characterization and systematic classification of Bact. proteus vulgaris (Hauser). Copenhagen: Levin and Munksgaard 1927.

    Google Scholar 

  • Moxod, J.: The growth of bacterial cultures. Ann Rev. Microbiol. 3, 371–394 (1949).

    Google Scholar 

  • Morita, R. Y., and C. E. Zo Bell: Effect of hydrostatic pressure on the succinic dehydrogenase system in Escherichia coli. J. Bact. 71, 668–672 (1956).

    PubMed  CAS  Google Scholar 

  • Morse, M. L., and C. E. Carter: Synthesis of nucleic acids in cultures of Escherichia (Bacillus) coli strains B and B/r. J. Bact. 58, 317–326 (1949).

    PubMed  CAS  Google Scholar 

  • Mucibabic, S.: Some aspects of the growth of single and mixed populations of flagellates and ciliates. The effect of temperature on the growth of Chilomonas paramecium. J. exp. Biol. 33, 627–644 (1956).

    Google Scholar 

  • Najjar, V. A.: The role of metal ions in enzyme reactions. In: Phosphorus metabolism (W. D. Mcelroy and B. Glass, eds.), Vol. I, pp. 500–520. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Nardi, F.: Bakteriologische Untersuchungen zur Wirkungsweise des Penicillins. Naturwiss. 32, 159–161 (1945).

    CAS  Google Scholar 

  • Newcombe, H. B., and H. A. Whitehead • Photoreversal of ultraviolet induced mutagenic and lethal effects in Escherichia coli. J. Bact. 61, 243–251 (1951).

    Google Scholar 

  • Newton, B. A.: Site of action of polymyxin on Pseudomonas aeruginosa: Antagonism by cations. J. gen. Microbiol. 10, 491–499 (1954).

    PubMed  CAS  Google Scholar 

  • Newton, B. A.: A fluorescent derivative of polymyxin; its preparation and use in studying the site of action of the antibiotic. J. gen. Microbiol. 12, 226–236 (1955).

    PubMed  CAS  Google Scholar 

  • Nickerson, W. J.: Enzymatic control of cell division in micro-organisms. Nature (Lond.) 172, 241–245 (1948).

    Google Scholar 

  • Nickerson, W. J.: Metabolic aspects of bacterial growth in the absence of cell division. 5th Internat. Congr. Microbiol. (Rio de Janeiro), Abstr. of Papers, 33–34, 1950.

    Google Scholar 

  • Nickerson, W. J., and G. Falcone: Identification of a protein disulfide reductase as a cellular division enzyme in yeasts. Science 124, 722–723 (1956).

    PubMed  CAS  Google Scholar 

  • Nickerson, W. J., and F. G. Sherman: Metabolic aspects of bacterial growth in the absence of cell division. II. Respiration of normal and filamentous cells of Bacillus cereus. J. Bact. 64, 667–678 (1952).

    PubMed  CAS  Google Scholar 

  • Nickerson, W. J., and J. W. Van Rij: Effect of thiol compounds, penicillin and cobalt on the cell division mechanism of yeast. Biochim. biophys. Acta 3, 461–475 (1949).

    CAS  Google Scholar 

  • Nickerson, W. J., and M. Webb: Effect of folic acid analogues on growth and cell division of non-exacting micro-organisms. J. Bact. 71, 129–139 (1956).

    PubMed  CAS  Google Scholar 

  • NovicK, A., and L. Szilard • Experiments on light-reactivation of ultra-violet irradiated bacteria. Proc. nat. Acad. Sci. (Wash.) 35, 591–600 (1949).

    Google Scholar 

  • Ogg, J. E., H. I. Adler and M. R. Zelle: Protection of Escherichia coli against ultraviolet light irradiation by catalase and related enzymes. J. Bact. 72, 494 496 (1956).

    Google Scholar 

  • Opienska-Blattth, J., M. Kanski and L. Slobinska: Glucose metabolism in B. coli. Ann. Univ. M. Curie-Sklodowska Ser. D 4, 69–113 (1949).

    Google Scholar 

  • Ord, M. G., and L. A. Stocken: The effect of X- and y-rays on nucleic acid metabolism in the rat in vitro and in vivo. Biochem. J. 63, 3–8 (1956).

    PubMed  CAS  Google Scholar 

  • Pappenheimer, A. M., and S. J. Johnson: Studies in diphtheria toxin production. I. The effect of iron and copper. Brit. J. exp. Path. 17, 335–341 (1936).

    CAS  Google Scholar 

  • Pappenheimer, A. M., and E. Shaskan: Effect of iron on carbohydrate metabolism of Clostridium welchii. J. biol. Chem. 155, 265–275 (1944).

    CAS  Google Scholar 

  • Park, J. T.: Uridine-5’-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus. J. biol. Chem. 194, 877–884 (1952 a).

    Google Scholar 

  • Park, J. T.: II. A structure common to three derivatives. J. biol. Chem. 194, 885–895 (1952b).

    PubMed  CAS  Google Scholar 

  • Park, J. T.: Iii. Amino acid containing derivatives. J. biol. Chem. 194, 897–904 (1952c).

    PubMed  CAS  Google Scholar 

  • Park, J. T.: Uridinediphosphate derivatives in Staphylococcus aureus treated with crystal violet or various antibiotics. (Abstr.) Fed. Proc. 13, 271 (1954).

    Google Scholar 

  • Park, J. T., and M. J. Johnson: Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. J. biol. Chem. 179, 585–592 (1949).

    PubMed  CAS  Google Scholar 

  • Park, J. T., and J. L. Strominger: Mode of action of penicillin. Biochemical basis for the mechanism of action of penicillin, and for its selective toxicity. Science 125, 99–101 (1957).

    PubMed  CAS  Google Scholar 

  • Parr, L. W., and M. L. RoBbins: The concept of stability and some of its implications. J. Bact. 43, 661–684 (1942).

    Google Scholar 

  • Payne, J. I., P. E. Hartman, S. Mudd and A. W. Phillips’ Cytological analysis of ultraviolet irradiated Escherichia coli. Iii. Reactions of a sensitive strain and a resistant mutant. J. Bact. 72, 461–472 (1956).

    Google Scholar 

  • Payne, J. I., P. E. Hartman, A. Phillips and S. Mudd: Cytological sequences following ultraviolet irradiation of Escherichia coli. Bact. Proc. 1955, 38.

    Google Scholar 

  • Payne, J. I., S. Mudd, P E Hartman and A. W. Phillips: Cytological reactions of Escherichia coli, strain B, and its mutants resistant to ultraviolet radiation. ( Abstr.) Bact. Proc. 1956, 37.

    Google Scholar 

  • Peacocke, A. R.: The absorption of proflavine by Gram positive and Gram negative organisms. Exp. Cell Res. 7, 498–504 (1954).

    PubMed  CAS  Google Scholar 

  • Peacocke, A. R., and J. N. H. Skerrett: The interaction of amino-acridines with nucleic acids. Trans. Faraday Soc. 52, 261–279 (1956).

    CAS  Google Scholar 

  • Pitzurra, M.: Giant forms caused by lithium in a strain of Escherichia coli. Boll. Ist. sieroter. milan. 34, 546–551 (1954).

    Google Scholar 

  • Porro, A., e E. Soncin: Antibiotici e ossidazione dell’acido acetoacetico prodotta dall’E. coli. Arch. int. Pharmacodyn. 95, 64–67 (1953).

    CAS  Google Scholar 

  • Porro, A., e E. Soncin: Azione di alcuni antibiotici sul metabolismo dell’acido glutamico nell’E. coli. Arch. int. Pharmacodyn. 99, 481–486 (1954).

    CAS  Google Scholar 

  • Porter, J. R.: Bacterial chemistry and physiology. New York: Wiley 1946.

    Google Scholar 

  • Postgate, J. R.: Cytochrome C3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J. gen. Microbiol. 14, 545–572 (1956).

    PubMed  CAS  Google Scholar 

  • Pratt, R., and J. Dufrenoy: Cytochemical mechanism of penicillin action. J. Bact. 54, 127–133 (1947).

    CAS  Google Scholar 

  • Pratt, R., and J. Dufrenoy: Cytochemical interpretation of mechanism of penicillin action. Bact. Rev. 12, 79–103 (1948).

    PubMed  CAS  Google Scholar 

  • Price, W. H.: Phage formation in Staphylococcus muscae cultures. XI. The synthesis of ribonucleic acid, deoxyribonucleic acid and protein in uninfected bacteria. J. gen. Physiol. 35, 741–759 (1952).

    PubMed  CAS  Google Scholar 

  • Prusoff, W. H., L. T. Teply and C. G. King: The influence of pteroylglutamic acid on nucleic acid synthesis in Lactobacillus casei. J. biol. Chem. 176, 1309–1317 (1948).

    PubMed  Google Scholar 

  • PuLvertaft, J. V.: The effect of antibiotics on growing cultures of Escherichia coli. J. Path. Bact. 64, 75–89 (1952).

    Google Scholar 

  • Quastel, J. H., and D. M. Webley: Vitamin B1 and bacterial oxidations. Iii. The effects of magnesium, potassium and hexose-diphosphate ions. Biochem. J. 36, 8–33 (1942).

    PubMed  CAS  Google Scholar 

  • Reed, G. B., and J. H. Orr: The influence of H-ion concentration upon structure. I. H. influenzae. J. Bact. 8, 103–110 (1923).

    PubMed  CAS  Google Scholar 

  • Rege, D. V., and A. Sreenivasan: The influence of folic acid and vitamin B12 on nucleic acid metabolism in micro-organisms. J. biol. Chem. 210, 373–380 (1954).

    PubMed  CAS  Google Scholar 

  • Reid, R. D.: Studies on bacterial pigmentation. II. Growth requirements. Zbl. Bakt., II. Abt. 95, 379–389 (1937).

    CAS  Google Scholar 

  • Reimann, B.: Wachstumsbeobachtungen an dem Bazillus Welch Typ F (Bacillus enterotoxicus Zeiszler) unter Penicillineinwirkung. Zbl. Bakt., I. Abt. Orig. 159, 88–94 (1952).

    CAS  Google Scholar 

  • Roberts, R. B., and E. Aldous: Recovery from ultraviolet irradiation in Escherichia coli. J. Bact. 57, 363–375 (1949).

    PubMed  CAS  Google Scholar 

  • Robinow, C. F.: Cytological observations on Bacterium coli, Proteus vulgaris and various aerobic spore-forming bacteria with special reference to the nuclear structures. J. Hyg. (Lond.) 43, 413–423 (1944).

    CAS  Google Scholar 

  • Robinow, C. F.: Nuclear apparatus and cell structure of rod-shaped bacteria. Addendum in Dubos (1945), pp. 355–377.

    Google Scholar 

  • Robinow, C. F.: The chromatin bodies of bacteria. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 181–214 Cambridge: Univ. Press 1956(a).

    Google Scholar 

  • Robinow, C. F.: The chromatin bodies of bacteria. Bact. Rev. 20, 207–242 (1956b).

    PubMed  CAS  Google Scholar 

  • Rochford, E. J., and R. J. Mandel: The production of chains by Diplococcus pneumoniae in magnesium-deficient media. J. Bact. 66, 554–560 (1953).

    PubMed  CAS  Google Scholar 

  • Roepke, R. R., and F. E. Mercer: Lethal and sub-lethal effects of X-rays on Escherichia coli as related to the yield of biochemical mutants. J. Bact. 54, 731–743 (1947).

    PubMed  CAS  Google Scholar 

  • Rosenbaum, M., H. Halvorson, W. S. Preston and C. Levinthal: Development of phage-T2 deoxyribonucleic acid in the absence of net protein synthesis. J. Bact. 69, 228–229 (1955).

    PubMed  CAS  Google Scholar 

  • Rowley, D.: Inhibition of Escherichia coli by amino acids. Nature (Lond.) 171, 80 (1953).

    CAS  Google Scholar 

  • Rubin, B. A.: Growth and mutation of bacteria during continuous irradiation. J. Bact. 67, 361–368 (1954).

    PubMed  CAS  Google Scholar 

  • Sall, T., S. Mudd and J. C. Davis: Accumulation and disappearance of metaphosphate in cells of Corynebacterium diphtheriae. Arch. Biochem. 60, 130–146 (1956).

    PubMed  CAS  Google Scholar 

  • Salton, M. R. J.: Bacterial cell walls. In: Bacterial anatomy (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 81–110. Cambridge: Univ. Press 1956.

    Google Scholar 

  • Schepartz, S. A., and M. J. Johnson: Nature of the binding of penicillin by bacterial cells. J. Bact. 71, 84–90 (1956).

    PubMed  CAS  Google Scholar 

  • Scholes, G., and J. Weiss: Chemical action of X-rays on nucleic acids and related substances in aqueous systems. I. Degradation of nucleic acid, purines, pyrimidines, nucleosides and nucleotides by X-rays and free radicals produced chemically. Biochem. J. 53, 567–568 (1953).

    PubMed  CAS  Google Scholar 

  • Scudder, S. A.: The precipitation of magnesium ammonium phosphate crystals during the growth of bacteria in media containing nitrogenous substances. J. Bact. 16, 157–161 (1928).

    PubMed  CAS  Google Scholar 

  • Shanahan, A. J., and E. W. Tanner: Morphology of Escherichia coli exposed to penicillin. J. Bact. 55, 537–544 (1948).

    PubMed  CAS  Google Scholar 

  • Shankar, K.: Effect of magnesium on growth and metabolism of Clostridium perfringens. Diss. Absts. 14, 583 (1954).

    Google Scholar 

  • Shanrar, K., and R. C. Bard: Effect of metallic ions on the growth and morphology of Clostridium perfringens. J. Bact. 63, 279–290 (1952).

    Google Scholar 

  • Shanrar, K., and R. C. Bard: Effect of metallic ions on the growth, morphology and metabolism of Clostridium perfringens. I. Magnesium. J. Bact. 69, 436–443 (1955a).

    Google Scholar 

  • Shanrar, K., and R. C. Bard: II. Cobalt. J. Bact. 69, 444–448 (1955b).

    Google Scholar 

  • Shooter, R. A., and H. V. Wyatt: Mineral requirements for growth of Staphylococcus pyogenes; effect of magnesium and calcium ions. Brit. J. exp. Path. 36, 341–350 (1955).

    PubMed  CAS  Google Scholar 

  • Silverman, M.: Metal antagonism of the antibacterial and other drugs. Arch. Biochem. 19, 193–198 (1948).

    PubMed  CAS  Google Scholar 

  • Srnuxovitch, L.: Relation entre le développement abortif du prophage chez Bacillus megaterium 91 (1) et la synthèse de l’acide désoxyribonucléique. C. R. Acad. Sci. (Paris) 233, 1693–1696 (1951).

    Google Scholar 

  • Siminovitch, L., et S. Rapkine: Modifications biochimiques au cours du développement des bacteriophages chez une bactérie lysogéne. C. R. Acad. Sci. (Paris) 232, 1603–1605 (1951).

    CAS  Google Scholar 

  • Simmonds, S., and J. S. Fruton: Action of penicillin on bacterial utilization of amino acids and peptides. Science 111, 329–331 (1950).

    PubMed  CAS  Google Scholar 

  • Smith, D. B., and G. C. Butler: On the mechanism of the action of ionizing radiations on sodium thymonucleate. J. Amer. chem. Soc. 73, 258–261 (1951).

    CAS  Google Scholar 

  • Smith, I. W., J. F. Wilkinson and J. P. Duguid: Volutin production in Aerobacter aerogenes due to nutrient imbalance. J. Bact. 68, 450–463 (1954).

    PubMed  CAS  Google Scholar 

  • Snell, E. E.: Bacterial nutrition Chemical factors. In: Bacterial physiology (C. H. Werkman and P. W. Wlison, eds.), pp. 215–255. New York: Acad. Press 1951.

    Google Scholar 

  • Spenser, R. R.: The effects of radium upon bacteria. U. S. Publ. Health Rep. 49, 183–195 (1934).

    Google Scholar 

  • Spenser, R. R.: Further studies on the effects of radium upon bacteria. U. S. Publ. Health Rep. 50, 1642–1655 (1935).

    Google Scholar 

  • Spoerl, E., L. E. Loveless, T. H. Weisman and R. J. Balske • Studies on cell division. II. X-radiation as a division inhibiting agent. J. Bact. 67, 394–401 (1954).

    Google Scholar 

  • Spray, G. H., and R. M. Lodge: The effects of resorcinol and m-cresol on the growth of Bact. lactis aerogenes. Trans. Faraday Soc. 39, 424–431 (1943).

    CAS  Google Scholar 

  • Stacey, M., and M. Webb: Studies on the antibacterial properties of the bile acids and some compounds derived from cholanic acid. Proc. roy. Soc. B 134, 523–537 (1947).

    CAS  Google Scholar 

  • Stapleton, G. E., A. J. Sbarra and A. Hollaender: Some nutritional aspects of bacterial recovery from ionizing radiations. J. Bact. 70, 7–14 (1955).

    PubMed  CAS  Google Scholar 

  • Stempen, H.: Demonstration of a cell wall in the large bodies of Proteus vulgaris. J. Bact. 70, 177–181 (1955).

    PubMed  CAS  Google Scholar 

  • Tenzl, J.: Morphological variability of the nuclear substance and genetic changes induced by colchicine in Escherichia coli. Nature (Loud.) 163, 28 (1949).

    Google Scholar 

  • Stokes, J. L.: Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J. Bact. 67, 287–291 (1954).

    Google Scholar 

  • Strange, R. E.: The structure of an amino sugar present in certain spores and bacterial cell walls. (Abstr.) Biochem. J. 64, 23 P (1956).

    Google Scholar 

  • Strange, R. E., and F. A. Dark: An unidentified amino sugar present in cell walls and spores of various bacteria. Nature (Lond.) 177, 186–188 (1956).

    CAS  Google Scholar 

  • Strange, R. E., and J. F. Powell: Hexosamine-containing peptides in spores of Bacillus subtilis, B. megaterium and B. cereus. Biochem. J. 58, 80–85 (1954).

    PubMed  CAS  Google Scholar 

  • Strominger, J. L.: Microbial uridine-5’-pyrophosphate-N-acetylamino-sugar compounds. I. Biology of the penicillin-induced accumulation. J. biol. Chem. 224, 509–523 (1957).

    CAS  Google Scholar 

  • Stubblefield, E.: Globulus and stranded forms of B. coli on streptomycin agar. (Abstr.) J. Bact. 54, 81 (1947).

    PubMed  CAS  Google Scholar 

  • Szybalski, W. S., and M. E. Hunter-Szybalska: Synchronization of nuclear and cellular division in Bacillus megaterium. ( Abstr.) Bact. Proc. 1955, 36.

    Google Scholar 

  • Thorne, C. B., C. G. GóMez, H. E. Noyes and R. D. HousewRight: Production of glutamyl polypeptide by Bacillus subtilis. J. Bact. 68, 307–315 (1954).

    Google Scholar 

  • Tomatis, G., and F. Rossi: Some metabolic activities of pleomorphic forms induced by urethane. Boll. Ist. sieroter. milan. 34, 170–176 (1955).

    PubMed  CAS  Google Scholar 

  • Totter, J. R., and F. T. Moseley• Influence of the concentration of iron on the production of fluorescein by Pseudomonas aeruginosa. J. Bact. 65, 45–47 (1953).

    Google Scholar 

  • Truhaut, R., S. Lambin et M. Boyer: Contribution à l’étude du mechanisme d’action de la chloramycetine vis-à-vis d’Eberthella typhi. Rôle de tryptophane. Bull. Soc. Chim biol. (Paris) 33, 387–393 (1951).

    CAS  Google Scholar 

  • Tulasne, R.: Existence of L-forms in common bacteria and their possible importance. Nature (Lond.) 164, 876–877 (1949).

    CAS  Google Scholar 

  • Tulasne, R.: Le cycle L et les formes naines des bactéries. 6th. Internat. Congr. Microbiol. (Rome), 2nd Symp.: Bacterial cytology, pp. 144–181, 1953.

    Google Scholar 

  • Tulasne, R., et R. Minck: La formation des corps larger chez les bactéries et sa signification. C. R. Acad. Sci. (Paris) 226, 2186–2188 (1948).

    Google Scholar 

  • Tulasne, R., R. Minck et A. Mincx: Sur la variabilité de la structure cytologique des colibacilles. C. R. Soc. Biol. (Paris) 142, 1014–1016 (1948).

    CAS  Google Scholar 

  • Tulasne, R., J. Terranova et J. Lavillaureux: Obtention de formes L de diverses bactéries à Gram negativ sur des milieux sans sérum, mais contenant des vitamines du groupe B. Giom. Microbiol. 1, 44–51 (1955).

    Google Scholar 

  • Tulasne, R., R. Vendrely et R. Minck: Noyaux bactériens et streptomycine. C. R. Soc. Biol. (Paris) 142, 1012–1014 (1948).

    CAS  Google Scholar 

  • Tung, T., and C. N. Frazier• Penicillin sensitivity and morphology of the Reiter strain of Treponema pallidum after cultivation in media containing penicillin. Amer. J. Syph. 30, 205–210 (1946).

    Google Scholar 

  • Tunnicliff, R.: The action of protosil soluble and sulphanilamide on the phagocytic activities of leucocytes, and on the dissociation of streptococci. J. infect. Dis. 64, 59–65 (1939).

    CAS  Google Scholar 

  • Valentine, R. C., and J. R. G. Bradfield • Urea method for bacterial viability counts with the electron microscope and its relation to other viability counting methods. J. gen. Microbiol. 11, 349–357 (1954).

    Google Scholar 

  • Van Heyningen, W. E.: Microbial toxins. Bact. Rev. 19, 263–265 (1955).

    Google Scholar 

  • Vendrely, R., and R. Tulasne: Chemical constitution of the L-forms of bacteria. Nature (Lond.) 171, 262 (1953).

    CAS  Google Scholar 

  • Vignais, P., M. MachebŒUF et J. Basset: Comportement physico-chimique de l’acide ribonucléique de levure soumis à l’action des hautes pressions. Ann. Inst. Pasteur 85, 629–645 (1953).

    Google Scholar 

  • Vishwanathan, R., K. C. Gupta, A. Pande, I. C. Chopra and A. J. IL DE Monti: Electron microscopic study of the effect of streptomycin on the cytology of tubercle bacilli. Amer. Rev. Tuberc. 70, 328–333 (1954).

    CAS  Google Scholar 

  • Vortali, A., e D. Steve-Bocciarelli: Inactivation of bacteria with ultraviolet rays. The time factor. R. C. Ist. sup. Sanita 16, 45–66 (1953).

    Google Scholar 

  • Voss, E.: Die Wirkung überoptimaler Konzentrationen einiger Neutralsalze auf kokkoide Bakterien. Arch. Mikrobiol. 18, 101–132 (1952).

    PubMed  CAS  Google Scholar 

  • Wacker, A., A. Trebst, D. Jacherts U. F. Weygand: Über den Einbau von 5-Bromuracil (2–14C) in die Desoxyribonucleinsaure verschiedener Bakterien. Z. Naturforsch. 9B, 616–617 (1954).

    Google Scholar 

  • Wade, H. E.: Variations in the phosphorus content of Escherichia coli during cultivation. J. gen. Microbiol. 7, 24–30 (1952).

    PubMed  CAS  Google Scholar 

  • Wahlin, J. G., and P. J. Almaden: Megalomorphic phase of bacteria. J. infect. Dis. 65, 147–155 (1939).

    Google Scholar 

  • Wainwright, S. D., and J. Mullaney: Some effects of metabolic inhibitors upon survival of ultraviolet irradiated Escherichia coli. Experientia (Basel) 9, 376–377 (1953).

    CAS  Google Scholar 

  • Ware, G. C.: Nutritional requirements of Bacterium coli at 44°. J. gen. Microbiol. 5, 880–884 (1951).

    PubMed  CAS  Google Scholar 

  • The effect of incubation temperature on the growth requirements of Proteus vulgaris and Salmonella typhi. J. gen. Microbiol. 11, 398–400 (1954).

    Google Scholar 

  • Waring, W. S., and C. H. Werkman: Iron requirements of heterotrophic bacteria. Arch. Biochem. 1, 425–433 (1943).

    CAS  Google Scholar 

  • Waring, W. S., and C. H. Werkman: Iron deficiency in bacterial metabolism. Arch. Biochem. 4, 75–87 (1944).

    CAS  Google Scholar 

  • Weatherwax, R. S.: Desensitization of Escherichia coli to ultraviolet light. J. Bact. 72, 124–125 (1956a).

    PubMed  CAS  Google Scholar 

  • Reactivation of ultraviolet irradiated Escherichia coli. J. Bact. 72, 329–332 (1956b).

    Google Scholar 

  • Webb, M.: The influence of magnesium on cell division. I. The growth of Clostridium welchii in complex media deficient in magnesium. J. gen. Microbiol. 2, 275–287 (1948).

    CAS  Google Scholar 

  • Webb, M.: II. The effect of magnesium on the growth and division of various bacterial species in complex media. J. gen. Microbiol. 3, 410–417 (1949a).

    PubMed  CAS  Google Scholar 

  • Webb, M.: Iii. The effect of magnesium on the growth of bacteria in simple chemically-defined media. J. gen. Microbiol. 3, 418–424 (1949b).

    PubMed  CAS  Google Scholar 

  • Webb, M.: Chemistry of bacterial cell division. J. Soc. chem. Ind. (Lond.) 68, 319–321 (1949 c).

    Google Scholar 

  • Webb, M.: The influence of magnesium on cell division. IV. The specificity of magnesium. J. gen. Microbiol. 5, 480–484 (1951 a).

    Google Scholar 

  • Webb, M.: V. The effect of magnesium on the growth of bacteria in chemically-defined media of varying complexity. J. gen. Microbiol. 5, 485–495 (1951 b).

    Google Scholar 

  • Webb, M.: VI. The action of certain hydrolytic enzymes on the filamentous and chain forms of Gram positive rod-shaped organisms. J. gen. Microbiol. 5, 496–501 (1951 c).

    Google Scholar 

  • Webb, M.: Effect of magnesium on cellular division in bacteria. Science 118, 607–611 (1953).

    PubMed  CAS  Google Scholar 

  • Webb, M.: Inactivation of analogues of folic acid by certain non-exacting bacteria. Biochim. biophys. Acta 17, 212–225 (1955).

    CAS  Google Scholar 

  • Webb, M.: Aminopterin inhibition in Aerobacter aerogenes • Alanine and valine accumulation during the inhibition and their utilization on recovery. Biochem. J. 70, 472–498 (1958).

    PubMed  CAS  Google Scholar 

  • Webb, M., and W. J. Nickerson: Differential reversal of inhibitory effects of folic acid analogues on growth, division and deoxyribonucleic acid synthesis of micro-organisms. J. Bact. 71, 140–148 (1956).

    PubMed  CAS  Google Scholar 

  • Weed, L. L., and D. Longfellow • Morphological and biochemical changes induced by copper in a population of Escherichia coli. J. Bact. 67, 27–33 (1954).

    Google Scholar 

  • Weinberg, E. D.: Sporulation of Bacillus subtilis in nutrient broth containing added Mn++ and antimicrobial drugs. ( Abstr.) Bact. Proc. 1955a, 42.

    Google Scholar 

  • Weinberg, E. D.: The effect of Mn++ and antimicrobial drugs on the sporulation of Bacillus subtilis in nutrient broth. J. Bact. 70, 289–296 (1955 b).

    Google Scholar 

  • Weisman, T. H., and L. E. Loveless: Chemical inhibition of cell division of Escherichia coli by diazo compounds and antagonism by tyrosine. Proc. Soc. exp. Biol. (N. Y.) 86, 268–273 (1954).

    CAS  Google Scholar 

  • Wellerson, R., and P. A. Tetrault: The effect of various incubation temperatures on the ribonucleic acid production of a mesophilic and thermophilic bacterium. J. Bact. 69, 449–454 (1955).

    PubMed  CAS  Google Scholar 

  • Werner, G. H.: Sur les modifications apportées par la streptomycine à la structure d’une cellule bactérienne. C. R. Acad. Sci. (Paris) 228, 1260–1261 (1949).

    CAS  Google Scholar 

  • Weygand, F., u. A. Wacker: Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. Iii. Aufnahme von 5–82Br-Uracil durch Enterococcus und B. coli. Z. Naturforsch. 7B, 26–28 (1952).

    Google Scholar 

  • Weygand, F., A. Wacker u. H. Dellwig: Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. II. Kompetitive und nicht-kompetitive Enthemmung von 5–82Br-Uracil. Z. Naturforsch. 7B, 19–25 (1952).

    Google Scholar 

  • Whitfield, J. T., and R. G. E. Murray: The effect of the ionic environment on the chromatin structures of bacteria. Canad. J. Microbiol. 2, 245–260 (1956).

    CAS  Google Scholar 

  • Williams, R. P.: Symposium on bacterial pigments.

    Google Scholar 

  • Williams, R. P.: Bact. Rev. 20, 282–284 (1956).

    PubMed  CAS  Google Scholar 

  • Winckler, K. C., and P. G. DE Haan• On the action of sulfanilamide. Xii A set of non-competitive sulfanilamide antagonists for Escherichia coli. Arch. Biochem. 18, 97–107 (1948).

    Google Scholar 

  • Wisseman, C. L., J. E. Smadel, F E Hahn and H. E. Hoprs: Mode of action of chloramphenicol. I. Action of chloramphenicol on the assimilation of ammonia and on synthesis of protein and nucleic acid in Escherichia coli. J. Bact. 67, 662–673 (1954).

    PubMed  CAS  Google Scholar 

  • Witkin, E.: Nuclear segregation and the delayed appearance of induced mutants in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 16, 357–371 (1951).

    CAS  Google Scholar 

  • Wolberg, A. (1938): Quoted by Porter (1946, Chap. 5 ).

    Google Scholar 

  • Woolley, D. W.: A study of non-competitive antagonism with chloramycetin and related analogues of phenyl-alanine. J. biol. Chem. 18, 293–305 (1950).

    Google Scholar 

  • Woolley, D. W.: Chloramphenicol. Transact. N. Y. Acad. Sci. 15 (II), 17–18 (1952).

    Google Scholar 

  • Won, W. D.: Production of “giant” cells of Pasteurella pestis by treatment with camphor. J. Bact. 60, 102–104 (1950).

    PubMed  CAS  Google Scholar 

  • Woods, D. D.: Significance of the metabolic interactions of growth factors and their analogues for the growth of microorganisms. 6th Internat. Congr. Microbiol. (Rome), 6th Symp.: Nutrition and Growth Factors, pp. 3–22, 1953.

    Google Scholar 

  • Zamenhof, S., R. DE Giovanni and K. Rich: Escherichia coli containing unnatural pyrimidines in its deoxyribonucleic acid. J. Bact. 71, 60–69 (1956).

    Google Scholar 

  • Zamenhof, S., and G. Griboff: Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of Escherichia coli and its bacteriophages. Nature (Lond.) 174, 306–307 (1954a).

    CAS  Google Scholar 

  • Zamenhof, S., and G. Griboff: Escherichia coli containing 5-bromouracil in its deoxyribonucleic acid. Nature (Lond.) 174, 307–308 (1954b).

    Google Scholar 

  • Zamenhof, S., B. Reiner, R. DE Giovanni and K. Rich: Introduction of unnatural pyrimidines into deoxyribonucleic acid of Escherichia coli. J. biol. Chem. 219, 165–173 (1956).

    PubMed  CAS  Google Scholar 

  • Zelle, M. R., and A. Hollaender: Effects of radiation on bacteria. In: Radiation biology, 2nd ed. (A. Hollaender, ed.), pp. 365–430. New York: McGraw-Hill 1955.

    Google Scholar 

  • Zelle, M. R., and J. E. Ogg: Attempts to produce polyploidy in Escherichia coli by camphor vapours. ( Abstr.) Bact. Proc. 1954, 39.

    Google Scholar 

  • Zobell, C. E.: Some effects of high hydrostatic pressures on physiological activities in bacteria. ( Abstr.) Bact. Proc. 1955, 26.

    Google Scholar 

  • Zobell, C. E., and C. H. Oppenheimer: Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J. Bact. 60, 771–781 (1950).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Webb, M. (1965). Physiology of growth and morphogenesis in bacteria. In: Allsopp, A., et al. Differentiation and Development / Differenzierung und Entwicklung. Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-36273-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-36273-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-35445-2

  • Online ISBN: 978-3-662-36273-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics