Skip to main content

Abstract

Every living organism has the power to produce structures, and to carry on activities, which cannot be regarded as consequences of the environment. The whole science of taxonomy rests upon the steady persistence with which each species adheres to its own characteristic scheme of development. Used with discretion any taxonomic work will furnish us with a select list of developmental processes which experience has shown to be, over a wide range, independent of environmental influence. All these processes must be considered to display the quality of self-regulation. We need not suppose that physiological systems which are in this sense self-regulating are necessarily inaccessible to experimental treatment. The very fact that a plant has survived indicates that its developmental physiology can bear wind and weather, the passage of the seasons, and accidental inequalities of nutrition. It follows therefore that to obtain significant experimental results we ought to resort to treatments which are quite outside the range of the plant’s normal experience. The fact, for example, that an ordinary crucifer will continue to produce dimerous flowers under any conditions which will permit it to flower at all, is sufficient guarantee that we are unlikely to learn anything of the underlying physiology by gentle photoperiodic stimulation, or anything of that kind. But there is nothing irrational in the supposition that the symmetry of the flower might admit of instructive modification if the primordium were centrifuged or subjected to electrical treatment. And if some “unnatural” treatment were to be discovered which would cause the flowers to develop in trimerous form that need not alter our view regarding the self-regulating quality of the normal mode of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Baillaud, L.: Recherches sur les mouvements spontanés des plantes grimpantes. Ann. scient. Univ. Besançon, Sér. II, Bot., No. 11 (1957).

    Google Scholar 

  • Bonner, J. T., and E. B. Frascella• Variations in cell size during the development of the slime mold Dictyostelium discoideum. Biol. Bull. 104, 297–300 (1953).

    Article  Google Scholar 

  • Bose, J. C.: Plant autographs and their revelations. London: Longmans Green 1927.

    Google Scholar 

  • Brett, D. W., and K. J. Dormer: Observations on a cyclic fluctuation in the leaf serrations of Spiraea salicif olia, and on the asymmetry of the leaf. New Phytologist 59, 104–108 (1960).

    Article  Google Scholar 

  • Comfort, A.: The biology of senescence. London: Routledge Kegan Paul 1956.

    Google Scholar 

  • Dormer, K. J.: Vegetative morphology as a guide to the classification of the Papilionatae New Phytologist 45, 145–161 (1946).

    Google Scholar 

  • Dormer, K. J.: The Acacian type of vascular system and some of its derivatives. I. Introduction, Menispermaceae and Lardizabalaceae, Berberidaceae. New Phytologist 53, 301–311 (1954).

    Article  Google Scholar 

  • Dowling, J. J.: Observations of plant growth with. the recording ultra-micrometer. Nature (Lond.) 107, 523 (1921).

    Article  Google Scholar 

  • Esau, K.: Primary vascular differentiation in plants. Biol. Rev. 29, 46–86 (1954).

    Article  Google Scholar 

  • Fuzee, P.: Beiträge zum KompaBpflanzenproblem und einigen verwandten Problemen. Flora (Jena) 135, 435–444 (1942).

    Google Scholar 

  • Gleissberg, W.: A criterion for the reality of cyclic variation. Nature (Lond.) 157, 663–664 (1946).

    Article  CAS  Google Scholar 

  • Larsen, P.: The development of geotropic and spontaneous curvatures in roots. Physiol. Plantarum (Cph.) 10, 127–163 (1957).

    Article  Google Scholar 

  • Ller-Stoll, W. R.: Über Regeneration und Polarität bei Enteromorpha. Flora (Jena) 189, 148–180 (1952).

    Google Scholar 

  • Roelofsen, P. A.: The origin of spiral growth in Phycomyces sporangiophores. Rec. Tray. bot. néerl. 42, 72–110 (1950).

    Google Scholar 

  • Schmucker, T.: Rechts-und Linkstendenz bei Pflanzen. Beih. bot. Zbl. 41 I, 51–81 (1925).

    Google Scholar 

  • Schroeder, C. A.: Growth and development of the Fuerte avocado fruit. Proc. Amer. Soc. hort. Sci. 61, 103–109 (1953).

    Google Scholar 

  • Stanier, R. Y.: Enzymatic adaptation in bacteria. Ann. Rev. Microbiol. 5, 35–56 (1951).

    Article  CAS  Google Scholar 

  • Street, H. E., and M. P. Mcgonagle: Factors controlling meristematic activity in excised roots. IV. Habituation of the main axis meristem of excised roots to repeated subculture. Physiol. Plantarum (Cph.) 6, 707–722 (1953).

    Article  Google Scholar 

  • Sussmax, M.: The biology of the cellular slime molds. Ann. Rev. Microbiol. 10, 21–50 (1958).

    Article  Google Scholar 

  • Wangermajn, E., and E. Ashby: Studies in the morphogenesis of leaves. Vii. Effects of light intensity and temperature on the cycle of ageing and rejuvenation in the vegetative life history of Lemna minor. Correlative effects of fronds in Lemna minor. New Phytologist 50, 186–209 (1951).

    Article  Google Scholar 

  • Wardlaw, C. W.: Experimental investigations of the shoot apex of Dryopteris aristata Druce. Phil. Trans. roy. Soc. B 232, 343–384 (1947).

    Article  Google Scholar 

  • Warts, H.: Cytophysiological studies on Micrasteria8. II. The cytoplasmic framework and its mutation. Physiol. Plantarum (Cph.) 3, 236–246 (1950).

    Article  Google Scholar 

  • Warts, H.: Cytophysiological studies on Micrasterias. Iii. Factors influencing the development of enucleate cells. Physiol. Plantarum (Cph.) 4, 387–409 (1951).

    Article  Google Scholar 

  • Went, F. W.: Gene action in relation to growth and development. I. Phenotypic variability. Proc. nat. Acad. Sci. (Wash.) 89, 839–848 (1953).

    Article  Google Scholar 

  • Went, F. W.: The experimental control of plant growth. Waltham: Chronica bot. 1957.

    Google Scholar 

  • Wetmore, R. H., and C. W. Wardlaw: Experimental morphogenesis in vascular plants. Ann. Rev. Plant Physiol. 2, 269–292 (1951).

    Article  CAS  Google Scholar 

  • Whiddington, R.: The ultra-micrometer. Phil. Mag., Ser. VI 40, 634–639 (1920).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dormer, K.J. (1965). Self-regulatory phenomena in plant development. In: Allsopp, A., et al. Differentiation and Development / Differenzierung und Entwicklung. Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-36273-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-36273-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-35445-2

  • Online ISBN: 978-3-662-36273-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics