Skip to main content

Surrogate Models for Antimalarials

  • Chapter
Antimalarial Drugs I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 68))

Abstract

In recent years studies concerned with the mode of action of antimalarial drugs such as chloroquine have shifted from those concerned primarily with the effects on a particular enzyme or enzyme system to studies concerned with the consequences of the ability of chloroquine to act as a lysosomotropic agent. As a result of this new emphasis, chloroquine has become a useful tool in analysing a variety of cellular processes such as receptor-mediated endocytosis, regulation of the numbers of various membrane-associated receptors, the secretion, uptake and delivery of lysosomal enzymes, and means by which cells degrade various classes of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa M (1972) High resolution autoradiography of malarial parasites treated with 3H-chloroquine. Am J Pathol 67:277–284

    PubMed  CAS  Google Scholar 

  • Ascoli M (1978) Demonstration of a direct effect of inhibitors of the degradation of receptor-bound human chorionic gonadotropin on the steroidogenic pathway. J Biol Chem 253:7839–7843

    PubMed  CAS  Google Scholar 

  • Ascoli M (1979) Inhibition of the degradation of receptor-bound human choriogonadotropin by leupeptin. Biochim Biophys Acta 586:608–614

    PubMed  CAS  Google Scholar 

  • Ascoli M, Puett D (1978 a) Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells. J Biol Chem 253:4892–4899

    PubMed  CAS  Google Scholar 

  • Ascoli M, Puett D (1978 b) Inhibition of the degradation of receptor-bound human choriogonadotropin by lysosomotropic agents, protease inhibitors, and metabolic inhibitors. J Biol Chem 253:7832–7838

    PubMed  CAS  Google Scholar 

  • Ballard FJ (1977) Intracellular protein degradation. Essays Biochem 13:1–37

    PubMed  CAS  Google Scholar 

  • Beechey RB, Roberton AM, Holloway CT, Knight IG (1967) The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation. Biochemistry 6:3867–3879

    PubMed  CAS  Google Scholar 

  • Binz C (1867 a) Über die Wirkung antiseptischer Stoffe auf Infusorien von Pflanzenjauche. Zentralb Med Wiss 5:305–308

    Google Scholar 

  • Binz C (1867 b) Über die Einwirkung des Chinin auf Protoplasma-Bewegungen. Arch Mikrosk Anat 3:383–389

    Google Scholar 

  • Bock E (1939) Über morphologische Veränderungen menschlicher Malaria Parasiten durch Atebrineinwirkung. Arch Schiffs-Trop Hyg 43:209–214

    CAS  Google Scholar 

  • Bock E, Oesterlin M (1938/1939) Über einige fluoreszenzmikroscopische Beobachtungen. Zentralbl Bakteriol (Naturwiss) 143:306–318

    Google Scholar 

  • Brandes D, Bertini F (1964) Role of Golgi apparatus in the formation of cytolysomes. Exp Cell Res 35:194–217

    PubMed  CAS  Google Scholar 

  • Brown MS, Dana SE, Goldstein JL (1975) Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoproteins. Proc Natl Acad Sci USA 72:2025–2029

    Google Scholar 

  • Buchler JW (1975) Static coordination chemistry of metalloporphyrins. In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 157–231

    Google Scholar 

  • Bullock FJ (1968) Antiprotozoal quinones. I. Synthesis of 2-hydroxy-3-alkyl-1,4-naphthoquinones as potential coccidostats. J Med Chem 11:419–424

    PubMed  CAS  Google Scholar 

  • Carpenter G, Cohen S (1976) 125I-labelled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol 71:159–171

    PubMed  CAS  Google Scholar 

  • Carter RF (1969) Sensitivity to amphotericin B of a Naegleria sp. isolated from a case of primary amoebic meningoencephalitis. J Clin Pathol 22:470–474

    PubMed  CAS  Google Scholar 

  • Casemore DP (1970) Sensitivity of Hartmanella (Acanthamoeba) to 5-fluorocytosine, hydroxystilbamidine, and other substances. J Clin Pathol 23:649–652

    PubMed  CAS  Google Scholar 

  • Charet P, Aissi E, Maurois P, Bouquelet S, Biguet J (1980) Aminopeptidase in rodent Plasmodium. Comp Biochem Physiol [B] 65:519–524

    Google Scholar 

  • Cheng CC (1971) Structure and antimalarial activity of aminoalcohols and 2-(p-chlorophenyl)-2(4-piperidyl)-tetrahydrofuran. J Pharm Sci 60:1596–1598

    PubMed  CAS  Google Scholar 

  • Chou AC, Fitch CD (1980) Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. J Clin Invest 66:856–858

    PubMed  CAS  Google Scholar 

  • Chou SC, Ramanathan S (1968) Quinacrine: site of inhibition of synchronized cell division in Tetrahymena. Life Sci 7:1053–1062

    PubMed  CAS  Google Scholar 

  • Chou SC, Ramanathan S, Cutting WC (1968) Quinacrine: inhibition of synchronized cell division in Tetrahymena. Pharmacology 1:60–64

    PubMed  CAS  Google Scholar 

  • Chou AC, Chevli R, Fitch CD (1980) Ferriprotoporphyrin IX fulfils the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19:1543–1549

    PubMed  CAS  Google Scholar 

  • Clancy CF (1968) The lethal effect of certain antimalarial drugs on Tetrahymena pyriformis. Am J Trop Med Hyg 17:359–363

    PubMed  CAS  Google Scholar 

  • Cohen IA (1969) The dimeric nature of hemin hydroxides. J Am Chem Soc 91:1980–1983

    CAS  Google Scholar 

  • Conan NJ (1948) Chloroquine in amebiasis. Am J Trop Med Hyg 28:107–110

    PubMed  Google Scholar 

  • Conklin KA, Chou SC (1970) Antimalarials: effects on in vivo and in vitro protein synthesis. Science 170:1213–1214

    PubMed  CAS  Google Scholar 

  • Conklin KA, Chou SC (1972 a) The effects of antimalarial drugs on uptake and incorporation of macromolecular precursors by Tetrahymena pyriformis. J Pharmacol Exp Ther 180:158–166

    PubMed  CAS  Google Scholar 

  • Conklin KA, Chou SC (1972 b) Studies on the mode of action of primaquine using Tetrahymena pyriformis. Proc Helminth Soc 39:261–264

    CAS  Google Scholar 

  • Conklin KA, Chou SC (1972 c) Isolation and characterization of Tetrahymena pyriformis GL mitochondria. Comp Biochem Physiol [B] 41:45–54

    CAS  Google Scholar 

  • Conklin KA, Chou SC, Ramanathan S (1969) Quinine: Effect on Tetrahymena pyriformis. I. Inhibition of synchronized cell division and site of action. Pharmacology 2:247–256

    PubMed  CAS  Google Scholar 

  • Conklin KA, Chou SC, Heu P (1971) Quinine: Effect on Tetrahymena pyriformis. III. Energetics of isolated mitochondria in the presence of quinine and other antimalarial drugs. Biochem Pharmacol 20:1877–1882

    PubMed  CAS  Google Scholar 

  • Conklin KA, Heu P, Chou SC (1973) The effects of antimalarial drugs on nucleic acid synthesis in vitro in Tetrahymena pyriformis. Mol Pharmacol 9:304–310

    PubMed  CAS  Google Scholar 

  • Cook L, Grant PT, Kermack WO (1961) Proteolytic enzymes of the erythrocytic forms of rodent and simian species of malarial plasmodia. Exp Parasitol 11:372–379

    PubMed  CAS  Google Scholar 

  • Cook RC, Rock RC, Aikawa M, Fournier MJ (1971) Ribosomes of the malarial parasite Plasmodium knowlesi-I. Isolation, activity, and sedimentation velocity. Comp Biochem Physiol [B] 39:897–911

    CAS  Google Scholar 

  • Corliss JO (1965) Tetrahymena, a ciliate genus of unusual importance in modern biological research. Acta Protozool 3:1–20

    Google Scholar 

  • Davidson MW, Griggs BG, Boykin DW, Wilson WD (1975) Mefloquine, a clinically useful quinolinemethanol antimalarial which does not significantly bind to DNA. Nature 254:632–634

    PubMed  CAS  Google Scholar 

  • Davies EE (1973) Studies on the host-parasite relationship and chemotherapy of Plasmodium berghei. PhD Thesis, University of Liverpool

    Google Scholar 

  • Davies EE, Warhurst DC, Peters W (1975) Action of quinine and WR 122455 (a 9-phenan-threnemethanol) on the fine structure of Plasmodium berghei in mouse blood. Ann Trop Med Parasitol 69:147–153

    PubMed  CAS  Google Scholar 

  • De Duve C (1963) The lysosome concept. In: de Reuck AVS, Cameron MP (eds) Lysosomes. Churchill, London, pp 1-31

    Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    PubMed  Google Scholar 

  • De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    PubMed  Google Scholar 

  • Diribe CO, Warhurst DC (1980) Inhibitors of chloroquine uptake. Trans R Soc Trop Med Hyg 74:675–676

    Google Scholar 

  • Djiane J, Kelly PA, Houdebine LM (1980) Effects of lysosomotropic agents, cytochalasin B, and colchicine on the “down regulation” of prolactin receptors in mammary gland explants. Mol Cell Endocrinol 18:87–98

    PubMed  CAS  Google Scholar 

  • Dutta GP, Yadava JNS (1972) Direct amoebicidal action of known antiamoebic drugs against axenically grown Entamoeba histolytica. Indian J Med Res 60:1156–1163

    PubMed  CAS  Google Scholar 

  • Eichel HJ (1956) Effects of atabrine and flavin mononucleotide on oxidation of succinic acid by Tetrahymena preparations. Biochim Biophys Acta 22:571–573

    PubMed  CAS  Google Scholar 

  • Ferone R (1977) Folate metabolism in malaria. Bull WHO 55:291–298

    PubMed  CAS  Google Scholar 

  • Fischer HD, Gonzalez-Noriega A, Sly WS, Morre DJ (1980) Phosphomannosyl enzyme receptors in rat liver. Subcellular distribution and role in intracellular transport of lysosomal enzymes. J Biol Chem 255:9608–9615

    PubMed  CAS  Google Scholar 

  • Fitch CD (1969) Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proc Natl Acad Sci 64:1181–1187

    PubMed  CAS  Google Scholar 

  • Fitch CD (1972) Chloroquine resistance in malaria: Drug binding and cross resistance patterns. Proc Helminth Soc Wash 39:265–271

    CAS  Google Scholar 

  • Fitch CD, Yunis NC, Chevli R, Gonzalez Y (1974) High affinity accumulation of chloroquine by mouse erythrocytes infected with Plasmodium berghei. J Clin Invest 54:23–33

    Google Scholar 

  • Floren CH, Nordgren H, Nillson A (1977) Effects of chloroquine and colchicine on the degradation of chyle cholesteryl ester and phospholipids in vivo. Eur J Biochem 80:331–340

    PubMed  CAS  Google Scholar 

  • Fourneau, E, Tre’fouel J, Novet D, Benoit G (1931) Contribution à la chimiotherapie du paludisme, essais sur les calfats. Ann Inst Pasteur Paris 46:514–541

    CAS  Google Scholar 

  • Gaddum JH (1957) Theories of drug antagonism. Pharmacol Rev 9:211–218

    PubMed  CAS  Google Scholar 

  • Goldberg B, Lumbros C, Bacchi J, Hutner SH (1974) Inhibition by several standard antiprotozoal drugs of growth and O2 uptake of cells and particulate preparations of a Leptomonas. J Protozool 21:322–326

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1977) The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 47:896–930

    Google Scholar 

  • Goldstein JL, Brunschede GY, Brown MS (1975) Inhibition of the proteolytic degradation of low density lipoprotein in human fibroblasts by chloroquine, concanavalin A, and Triton WR 1339. J Biol Chem 250:7854–7862

    PubMed  CAS  Google Scholar 

  • Gonzalez-Noriega A, Grubb JH, Talhad V, Sly WS (1980) Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol 85:839–852

    PubMed  CAS  Google Scholar 

  • Gordeeva LM (1965) Morphologic changes in Entamoeba histolytica under the effect of some acridine derivatives and chloroquine in culture. Med Parazitol (Mosk) 34:713–719 (in Russian)

    CAS  Google Scholar 

  • Gottlieb M, Zuhalsky M, Zuhalsky AC (1972) Crithidia as a model organism? J Parasitol 58:1008–1009

    PubMed  CAS  Google Scholar 

  • Greiling H, Dorner G (1962) Biochemische Untersuchungen zum Wirkungsmechanismus des Resochins. Z Rheumaforsch 21:316–324

    PubMed  CAS  Google Scholar 

  • Groupe V (1945) Effect of atabrine on Tetrahymena geleii (Protozoa, Ciliata). Proc Soc Exp Biol Med 60:321–323

    PubMed  CAS  Google Scholar 

  • Hahn FE (1974) Chloroquine (Resochin). In: Corcoran JW, Hahn FE (eds) Antibiotics, vol III. Springer, Berlin Heidelberg New York, pp 58–78

    Google Scholar 

  • Hahn FE, O’Brien RL, Ciak J, Allison JL, Olenick JG (1966) Studies on modes of action of chloroquine, quinacrine, and quinine and on chloroquine resistance. Milit Med 131:1071–1089

    CAS  Google Scholar 

  • Haigler HT, Willingham MC, Pastan I (1980) Inhibitors of 125I-epidermal growth factor internalization. Biochem Biophys Res Commun 94:630–637

    PubMed  CAS  Google Scholar 

  • Harold FM (1970) Antimicrobial agents and membrane function. Adv Microb Physiol 4:45–404

    CAS  Google Scholar 

  • Harold FM (1972) Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36:172–230

    PubMed  CAS  Google Scholar 

  • Harold FM (1977) Ion currents and physiological functions in microorganisms. Annu Rev Microbiol 31:181–203

    PubMed  CAS  Google Scholar 

  • Hart PD’A, Young MR (1978) Manipulation of the phagosome-lysosome fusion response in cultured macrophages. Enhancement of fusion by chloroquine and other amines. Exp Cell Res 114:486–490

    PubMed  CAS  Google Scholar 

  • Hasilik A, Neufeld EF (1980 a) Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem 255:4936–4945

    Google Scholar 

  • Hasilik A, Neufeld EF (1980 b) Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem 255:4946–4950

    PubMed  CAS  Google Scholar 

  • Hawkins SE, Hainton JM (1972) Sensitivity of amoebae to chloroquine or erythromycin. Microbios 5:57–63

    PubMed  CAS  Google Scholar 

  • Hill DL (1972 a) The biochemistry and physiology of Tetrahymena. Academic, New York, pp 193–202

    Google Scholar 

  • Hill DL (1972 b) The biochemistry and physiology of Tetrahymena. Academic, New York, pp 15–18

    Google Scholar 

  • Hill GC, Hutner SH (1968) Effect of trypanocidal drugs on terminal respiration of Crithidia fasciculata. Exp Parasitol 22:207–212

    PubMed  CAS  Google Scholar 

  • Homewood CA (1977) Carbohydrate metabolism of malarial parasites. Bull WHO [Suppl] 55:229–235

    CAS  Google Scholar 

  • Homewood CA, Atkinson EM (1973) Chloroquine-induced pigment clumping in P. berghei: dependence on composition of the medium. Trans R Soc Trop Med Hyg 67:26–27

    PubMed  CAS  Google Scholar 

  • Homewood CA, Warhurst DC, Baggaley VC (1971) Incorporation of radioactive precursors into Plasmodium berghei in vitro. Trans R Soc Trop Med Hyg 65:10

    CAS  Google Scholar 

  • Homewood CA, Warhurst DC, Peters W, Baggaley VC (1972 a) Lysosomes, pH, and the antimalarial action of chloroquine. Nature 235:50–52

    PubMed  CAS  Google Scholar 

  • Homewood CA, Warhurst DC, Peters W, Baggaley VC (1972 b) Electron transport in intraerythrocytic Plasmodium berghei. Proc Helminth Soc Wash 39:382–386

    CAS  Google Scholar 

  • Houdebine LM, Djiane J (1980) Effects of lysosomotropic agents and of microfilament and microtubule-disrupting agents on the activation of casein-gene expression by prolactin in the mammary gland. Mol Cell Biol 17:1–15

    CAS  Google Scholar 

  • Hutner SH (1964) Protozoa as toxicological tools. J Protozool 11:1–6

    PubMed  CAS  Google Scholar 

  • Hutner SH, Fromentin H, O’Connell KM (1968) Some biological leads to chemotherapy of blood protista, especially Trypanosomatidae. In: Weiman D, Ristic M (eds) Infectious blood diseases of man and animals, vol I. Academic, New York, pp 175–209

    Google Scholar 

  • Hutner SH, Baker H, Frank O, Cox D (1973) Tetrahymena as a nutritional pharmacological tool. In: Elliott AM (ed) Biology of Tetrahymena. Hutchinson and Ross, Pennsylvania, pp 411–433

    Google Scholar 

  • James SP (1934) The direct effect of atebrin on the parasites of benign tertian malaria. Trans RSocTrop Med Hyg 28:3

    Google Scholar 

  • Jirovec O (1963) Protozoa as models in biological research. In: Ludvik J, Lorn J, Varra J (eds) Progress in protozoology. Academic, New York, pp 31–37

    Google Scholar 

  • Kaplan A, Fischer HD, Achord D, Sly WS (1977) Phosphohexyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts. J Clin Invest 60:1088–1093

    PubMed  CAS  Google Scholar 

  • Kavanagh F (1963) Analytical microbiology, vol I. Academic, New York

    Google Scholar 

  • Kikuth W (1932) Chemotherapeutische Versuche mit neuen synthetischen Malariamitteln in ihrer Bedeutung für die Bekämpfung der Malaria. Zentralbl Bakteriol [Orig A] 127:172–178

    CAS  Google Scholar 

  • Kikuth W (1935) Die experimentelle Chemotherapie der Malaria. Dtsch Med Wochenschr 15:573

    Google Scholar 

  • King AC, Hernandez-Davis L, Cuatrecasas P (1980 a) Lysosomotropic amines cause intracellular accumulation of receptors for epidermal growth factor. Proc Natl Acad Sci USA 77:3283–3287

    PubMed  CAS  Google Scholar 

  • King AC, Willis RA, Cuatrecasas P (1980 b) Accumulation of epidermal growth factor within cells does not depend on receptor recycling. Biochem Biophys Res Commun 97:840–845

    PubMed  CAS  Google Scholar 

  • Kurnick NB, Radcliffe IE (1962) Reaction between DNA and quinacrine and other antimalarials. J Lab Clin Med 60:669–688

    PubMed  CAS  Google Scholar 

  • Kusiak JW, Quirk JM, Brady RO (1980) Factors that influence the uptake of β-hexosaminidase A by rat peritoneal macrophages. Biochem Biophys Res Commun 94:199–204

    PubMed  CAS  Google Scholar 

  • Lantz CH, Van Dyke K (1971) Studies concerning the mechanism of action of antimalarial drugs. II. Inhibition of the incorporation of adenosine-5’-monophosphate-3H into nucleic acids of erythrocyte-free malarial parasites. Biochem Pharmacol 20:1157–1166

    PubMed  CAS  Google Scholar 

  • Laveran A (1880) Note sur un nouveau parasite trouvé dans le sang de plusieurs malades atteints de fièvre palustre. Bull Acad Med Natl (Paris) 9:1235–1236

    Google Scholar 

  • Lee YC, Scherbaum OH (1965) Isolation of macronuclei from the ciliate Tetrahymena pyriformis GL. Nature 208:1350–1351

    PubMed  CAS  Google Scholar 

  • Lerman LS (1961) Structural consideration in the interaction of DNA and acridines. J Mol Biol 3:18–30

    PubMed  CAS  Google Scholar 

  • Levy MR, Chou SC (1973) Activity and some properties of an acid protease from normal and Plasmodium berghei-infected red cells. J Parasitol 59:1064–1070

    PubMed  CAS  Google Scholar 

  • Levy MR, Chou SC (1974) Some properties and susceptibility to inhibitors of partially purified acid proteases from Plasmodium berghei and from ghosts of mouse red cells. Biochim Biophys Acta 334:423–430

    CAS  Google Scholar 

  • Levy MR, Chou SC (1975) Inhibition of macromolecular synthesis in the malarial parasite by inhibitors of proteolytic enzymes. Experientia 31:51–53

    Google Scholar 

  • Levy MR, Siddiqui WA, Chou SC (1974) Acid protease activity in Plasmodium falciparum and P. knowlesi and ghosts of their respective red cells. Nature 247:546–549

    PubMed  CAS  Google Scholar 

  • Levy MR, Chou SC, Siddiqui WA (1976) Protease inhibitors and growth of the malarial parasite. Conference on acid proteases: structure, function, and biology, 1976. Oklahoma Medical Research Foundation, Oklahoma City

    Google Scholar 

  • Lie SO, Schofield B (1973) Inactivation of lysosomal function in normal cultured human fibroblasts by chloroquine. Biochem Pharmacol 22:3109–3114

    PubMed  CAS  Google Scholar 

  • Macomber PB, O’Brien RL, Hahn FE (1966) Chloroquine: Physiological basis of drug resistance in Plasmodium berghei. Science 152:1374–1375

    PubMed  CAS  Google Scholar 

  • Macomber PB, Sprinz H. Tousimis AJ (1967) Morphological effects of chloroquine on Plasmodium bergheiin mice. Nature 214:937–939

    PubMed  CAS  Google Scholar 

  • Mahler HR, Cordes EH (1967) Biological chemistry. Harper and Row, London

    Google Scholar 

  • Markees DG, Dewey VC, Kidder GW (1968) The synthesis and biological activity of substituted 2,6-diaminopyridines. J Med Chem 11:126–129

    PubMed  CAS  Google Scholar 

  • Marshall S, Olefsky JM (1979) Effects of lysosomotropic agents on insulin interactions with adipocytes. Evidence for a lysosomal pathway for insulin processing and degradation. J Biol Chem 254:10153–10160

    PubMed  CAS  Google Scholar 

  • Matsuzawa Y, Hostetler KY (1980) Inhibition of lysosomal phospholipase A and phospolipase C by chloroquine and 4,4’-bis (diethylaminoethoxy) α,β-diethyl phenylethane. J Biol Chem 255:5190–5194

    PubMed  CAS  Google Scholar 

  • Moulder JW, Evans EA Jr (1946) The biochemistry of the malaria parasite VI. Studies of the nitrogen metabolism of the malaria parasite. J Biol Chem 164:145–157

    PubMed  CAS  Google Scholar 

  • Nathan HA, Cowperthwaite J (1954) Use of the trypanosomid flagellate, Crithidia fasciculata, for evaluating antimalarials. Proc Soc Exp Biol Med 85:117–119

    PubMed  CAS  Google Scholar 

  • Neal RA (1963) Protozoan tools in the study of antimalarial drugs. Proc 7 th int cong trop med malaria, Rio de Janeiro, 5, 101-102. Available from: Gräfic Olimpica Editora, Luiz Franco, Rio de Janeiro

    Google Scholar 

  • Neal RA (1978) Antiamoebic activity of drugs given singly and in combination against axenically grown Entamoeba histolytica. Arch Invest Med [Suppl] 9:387–392

    CAS  Google Scholar 

  • Novikoff AB, Essner E (1962) Cytolysomes and mitochondrial degeneration. J Cell Biol 15:140–146

    PubMed  CAS  Google Scholar 

  • Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH by living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    PubMed  CAS  Google Scholar 

  • Oleksyn BJ, Lebioda LF (1980) Conformation-configuration relationship in cinchona alkaloids. Pol J Chem 54:755–762

    CAS  Google Scholar 

  • Ose L, Røken I, Norum KR, Berg T (1980) The effect of ammonia, chloroquine, leupeptin, colchicine, and cytochalasin B on degradation of high density lipoproteins in isolated rat hepatocytes. Exp Cell Res 130:127–135

    PubMed  CAS  Google Scholar 

  • Pan HYM, Chou SC, Conklin KA (1974) Effects of antimalarial drugs and Clofibrate on in vitro lipid synthesis in Tetrahymena pyriformis GL. Pharmacology 12:48–56

    PubMed  CAS  Google Scholar 

  • Paton WDM (1970) Receptors as defined by their pharmacological properties. In: Porter R, O’Connor M (eds) Molecular properties of drug receptors. Ciba Foundation Symposium. Churchill, London, pp 3-32

    Google Scholar 

  • Peters W (1970) Chemotherapy and drug resistance in malaria. Academic, New York

    Google Scholar 

  • Peters W, Portus JH, Robinson BL (1975) The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol 69:155–171

    PubMed  CAS  Google Scholar 

  • Peters W, Howells RE, Portus J, Robinson BL, Thomas SC, Warhurst DC (1977) The chemotherapy of rodent malaria, XXVII. Studies on mefloquine (WR 142490). Ann Trop Med Parasitol 71:407–418

    PubMed  CAS  Google Scholar 

  • Polet H, Barr CF (1969) Uptake of chloroquine 3-H3 by Plasmodium knowlesi in vitro. J Pharmacol Exp Ther 168:187–192

    PubMed  CAS  Google Scholar 

  • Porter M, Peters W (1976) The chemotherapy of rodent malaria, XXV. Antimalarial activity of WR 122455 (a 9-phenanthrene methanol) in vivo and in vitro. Ann Trop Med Parasitol 70:259–270

    PubMed  CAS  Google Scholar 

  • Prasad BNK (1972) In vitro effect of drugs against pathogenic and nonpathogenic free-living amoebae and on anaerobic amoebae. Indian J Exp Biol 10:43–45

    PubMed  CAS  Google Scholar 

  • Reijngoud DJ, Tager JM (1976) Chloroquine accumulation in isolated rat liver lysosomes. FEBS Lett 64:231–235

    PubMed  CAS  Google Scholar 

  • Riches DWH, Stanworth DR (1980) Primary amines induce selective release of lysosomal enzymes from macrophages. Biochem J 188:933–936

    PubMed  CAS  Google Scholar 

  • Sando GN, Titus-Dillon P, Hall CW, Neufeld EF (1979) Inhibition of receptor-mediated uptake of a lysosomal enzyme into fibroblasts by chloroquine, procaine, and ammonia. Exp Cell Res 119:359–364

    PubMed  CAS  Google Scholar 

  • Schellenberg KA, Coatney GR (1961) The influence of antimalarial drugs on nucleic acid synthesis in Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol 6:143–152

    PubMed  CAS  Google Scholar 

  • Scherbaum O, Zeuthen E (1954) Induction of synchronous cell division in mass cultures of Tetrahymena pyriformis. Exp Cell Res 6:221–227

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Schecter Y, Willingham MC, Pastan I (1978) Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci USA 75:2659–2663

    PubMed  CAS  Google Scholar 

  • Seglen PO, Grinde B, Solheim AE (1979) Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine, and leupeptin. Eur J Biochem 95:215–225

    PubMed  CAS  Google Scholar 

  • Sly W (1980) Saccharide traffic signals in receptor-mediated endocytosis and transport of acid hydrolases. In: Svennerholm L, Mandel P, Dreyfus H, Urban PF (eds) Structure and function of the gangliosides. Plenum, New York

    Google Scholar 

  • Stahl PD, Schlessinger PH (1980) Receptor-mediated pinocytosis of mannose/N-acetylglucosamine-terminated glycoproteins and lysosomal enzymes by macrophages. Trends Biochem Sci 5:194–196

    CAS  Google Scholar 

  • Stein Y, Ebin V, Bar-On H, Stein O (1977) Chloroquine-induced interference with degradation of serum lipoproteins in rat liver, studied in vivo and in vitro. Biochim Biophys Acta 486:286–297

    PubMed  CAS  Google Scholar 

  • Strauss JF, Kirsch T, Flickinger GL (1978) Effects of lysosomotropic agents on progestin secretion by rat ovarian cells. J Steroid Biochem 9:71–78

    Google Scholar 

  • Tappel AL, Zalkin H (1959) Lipid peroxidation in isolated mitochondria. Arch Biochem Biophys 80:326–332

    CAS  Google Scholar 

  • Tate P, Vincent M (1934) The action of atebrin on bird malaria. Parasitology 34:523–530

    Google Scholar 

  • Thompson PE, Werbel LM (1972) Antimalarial agents. Academic, New York

    Google Scholar 

  • Thompson PE, Bayles A, Bush DL, Lilligren BL (1948) On the ability of Plasmodium lophurae to acquire resistance to chlorguanide, camoquin, and chloroquine. J Infect Dis 83:250–255

    PubMed  CAS  Google Scholar 

  • Thurston JP (1952) Biological investigations on animal parasites of interest in chemotherapy. PhD Thesis, University of London

    Google Scholar 

  • Tietze C, Schlessinger P, Stahl P (1980) Chloroquine and ammonium ion inhibit receptor mediated endocytosis of mannose-glycoconjugates by macrophages: Apparent inhibition of receptor recycling. Biochem Biophys Res Commun 93:1–8

    PubMed  CAS  Google Scholar 

  • Tolleshaug H, Berg T (1979) Chloroquine reduces the number of asialoglycoprotein receptors in the hepatocyte plasma membrane. Biochem Pharmacol 28:2919–2922

    PubMed  CAS  Google Scholar 

  • Tonkin IM (1946) The testing of drugs against exoerythrocytic forms of P. gallinaceum in tissue culture. Br J Pharmacol 1:163–173

    CAS  Google Scholar 

  • Umezawa H, Aoyagi T (1977) Activities of proteinase inhibitors of microbial origin. In: Barett AJ (ed) Proteinases in mammalian cells and tissues. North Holland, Amsterdam

    Google Scholar 

  • Van Dyke K, Szustkiewicz C (1969) Apparent new modes of antimalarial action detected by inhibited incorporation of adenosine-8-3H into nucleic acids of Plasmodium berghei. Milit Med 134:1000–1006

    Google Scholar 

  • Van Dyke K, Szustkiewicz C, Lantz CH, Saxe LH (1969) Studies concerning the mechanism of action of antimalarial drugs — inhibition of the incorporation of adenosine-8-3H into nucleic acids of Plasmodium berghei. Biochem Pharmacol 18:1417–1425

    PubMed  Google Scholar 

  • Van Dyke K, Lantz C, Szustkiewicz C (1970) Quinacrine: Mechanisms of anti-malarial action. Science 169:492–493

    PubMed  Google Scholar 

  • Warhurst DC (1973) Chemotherapeutic agents and malaria research. In: Chemotherapeutic agents in the study of parasites. Symp Br Soc Parasitol 11:1–28

    CAS  Google Scholar 

  • Warhurst DC (1974) Malarial RNA. In: Bateman JB (ed) Basic research on malaria. Technical report ERO-5-74. European Research Office and Chelsea College, London, pp 196-200

    Google Scholar 

  • Warhurst DC (1981 a) Mapping the blood-schizontocide receptor. Trans R Soc Trop Med Hyg 75:606

    Google Scholar 

  • Warhurst DC (1981 b) The quinine-haemin interaction and its relationship to antimalarial activity. Biochem Pharmacol 30:3323–3327

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Baggaley VC (1972) Autophagic vacuole formation in P. berghei. Trans R Soc Trop Med Hyg 66:5

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Folwell RO (1968) Measurement of the growth rate of the erythrocytic stages of P. berghei and comparison of the potency of inocula after various treatments. Ann Trop Med Parasitol 62:349–360

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Gould S (1982) The chemotherapy of rodent malaria, XXXIII. The activity of chloroquine and related blood schizontocides, and of some analogues in drug-induced pigment clumping. Ann Trop Med Parasitol 36:257–264

    Google Scholar 

  • Warhurst DC, Hockley DJ (1967) Mode of action of chloroquine on Plasmodium berghei and P. cynomolgi. Nature 214:935–936

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Robinson BL (1971) Cytotoxic agents and haemozoin pigment in malaria parasites (Plasmodium berghei). Life Sci 10:755–760

    CAS  Google Scholar 

  • Warhurst DC, Thomas SC (1975) Pharmacology of the malaria parasite — a study of doseresponse relationships in chloroquine-induced autophagic vacuole formation in Plasmodium berghei. Biochem Pharmacol 24:1047–1056

    Google Scholar 

  • Warhurst DC, Thomas SC (1978) The chemotherapy of rodent malaria, XXXI. The effect of some metabolic inhibitors upon chloroquine-induced pigment clumping in Plasmodium berghei. Ann Trop Med Parasitol 72:204–211

    Google Scholar 

  • Warhurst DC, Williamson J (1970) Ribonucleic acid from Plasmodium knowlesi before and after chloroquine treatment. Chem Biol Interact 2:89–106

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Robinson BL, Howells RE, Peters W (1971) The effect of cytotoxic agents on autophagic vacuole formation in chloroquine-treated malaria parasites (Plasmodium berghei). Life Sci 10:761–771

    CAS  Google Scholar 

  • Warhurst DC, Homewood CA, Baggaley VC (1972 a) Observations in vitro on the mode of action of chloroquine and quinine in blood stages of Plasmodium berghei. J Protozool [Suppl] 19:53

    Google Scholar 

  • Warhurst DC, Homewood CA, Peters W, Baggaley VC (1972 b) Pigment changes in Plasmodium berghei as indicators of activity and mode of action of antimalarial drugs. Proc Helminth Soc Wash 39:271–278

    CAS  Google Scholar 

  • Warhurst DC, Homewood CA, Baggaley VC (1974) The chemotherapy of rodent malaria, XX. Autophagic vacuole formation in Plasmodium berghei in vitro. Ann Trop Med Parasitol 68:265–281

    PubMed  CAS  Google Scholar 

  • Wibo M, Poole B (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin Bl. J Cell Biol 63:430–440

    PubMed  CAS  Google Scholar 

  • Wiesmann UN, Didonato S, Herschkowitz NN (1975) Effects of chloroquine on cultured fibroblasts: Release of lysosomal hydrolases and inhibition of their uptake. Biochem Biophys Res Commun 66:1338–1343

    PubMed  CAS  Google Scholar 

  • Willcox P, Rattray S (1979) Secretion and uptake of β-N-acetylglucosaminidase by fibroblasts. Effect of chloroquine and mannose-6-phosphate. Biochim Biophys Acta 586:442–452

    PubMed  CAS  Google Scholar 

  • Yadava JNS, Dutta GP (1973) Combined action of antiamoebic drugs and antibiotics on axenically grown Entamoeba histolytica. Indian J Med Res 61:971–975

    PubMed  CAS  Google Scholar 

  • Yamada KA, Sherman IW (1979) Plasmodium lophurae. Composition and properties of hemozoin, the malaria pigment. Exp Parasitol 48:61–74

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chou, SC., Conklin, K.A., Levy, M.R., Warhurst, D.C. (1984). Surrogate Models for Antimalarials. In: Peters, W., Richards, W.H.G. (eds) Antimalarial Drugs I. Handbook of Experimental Pharmacology, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35326-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35326-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-34991-5

  • Online ISBN: 978-3-662-35326-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics