Skip to main content

Regulation of Renal Vascular Resistance: Studies Using Pharmacological Probes

  • Chapter
Nephrology

Abstract

The kidney has two resistance vessels, the afferent and the efferent arterioles, located in the pre- and post-glomerulus. Different reactions of each arteriole to endogenous and exogenous vasoactive agents regulate renal blood flow (RBF) and glomerular filtration rate (GFR). Functional and anatomical heterogeneity among nephrons has also been well recognized. Therefore, it might be expected that differences exist among nephrons in the relative tonus of afferent and efferent arterioles. However, there is no literature concerning these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Osswald H, Hermes H, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int 22: S136 - S142

    Article  Google Scholar 

  2. Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12: 263–267

    Article  PubMed  CAS  Google Scholar 

  3. Spielman WS, Thompson IC (1982) A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol 242: F423–435

    PubMed  CAS  Google Scholar 

  4. Van Calker D, Miller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276: 839–841

    Article  PubMed  Google Scholar 

  5. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77: 2551–2554

    Article  PubMed  CAS  Google Scholar 

  6. Premen AJ, Hall EJ, Mizelle LH, Cornell EJ (1985) Maintenance of renal autoregulation during infusion of aminophylline or adenosine. Am J Physiol 248 (Renal Fluid Electrolyte Physiol 17): F366 - F373

    PubMed  CAS  Google Scholar 

  7. Ueda J, Abe Y, Okahara T, Yamamoto K (1974) Adenine nucleotides and renal function: Special reference with intrarenal distribution of blood flow. Osaka City Med J 20: 33–50

    PubMed  CAS  Google Scholar 

  8. Schmid HE, Garrett CR, Spencer PM (1964) Intrinsic hemodynamic adjustments to reduced renal pressure gradients. Circ Res 15 (Suppl): 170–177

    PubMed  Google Scholar 

  9. Selkurt EE, Hall WP, Spencer PM (1949) Influence of graded arterial pressure decrement of renal clearance of creatinine, p-aminohippurate and sodium. Am J Physiol 159: 359–378

    Google Scholar 

  10. Abe Y, Dixon F, McNay JL (1970) Dissociation between autoregulation of renal blood flow and glomerular filtration rate. Am J Physiol 219: 986–993

    PubMed  CAS  Google Scholar 

  11. Navar LG (1970) Minimal preglomerular resistance and calculation of normal glomerular pressure. Am J Physiol 219: 1658–1664

    PubMed  CAS  Google Scholar 

  12. Robertson CR, Deen MW, Troy LJ, Brenner MB (1972) Dynamics of glomerular ultrafiltration in the rat: III. Hemodynamics and autoregulation. Am J Physiol 223: 1191–1200

    PubMed  CAS  Google Scholar 

  13. Walser M, Davidson GD, Orloff J (1955) The renal clearance of alkali-stable inulin. J Clin Invest 34: 1520–1523

    Article  PubMed  CAS  Google Scholar 

  14. McNay JL, Abe Y (1970) Pressure dependent heterogeneity of renal cortical blood flow in dogs. Circ Res 27: 571–587

    Article  PubMed  CAS  Google Scholar 

  15. Abe Y, Okahara T, Kishimoto T, Yamamoto K, Ueda J (1973) Relationship between intrarenal distribution of blood flow and renin secretion. Am J Physiol 225: 319–323

    PubMed  CAS  Google Scholar 

  16. Abe Y, Kishimoto T, Yamamoto K, Ueda J (1973) Intrarenal distribution of blood flow during ureteral and venous pressure elevation. Am J Physiol 224: 746–751

    PubMed  CAS  Google Scholar 

  17. Ueda J. (1972) Adenine nucleotides and renal function: Special reference with intrarenal distribution of blood flow (abstract). Jpn J Pharmacol 22: 5

    PubMed  Google Scholar 

  18. Broadns AE, Kaminsky NI, Northcutt RC, Hardman JC, Sutherland EW, Liddle GW (1970) Effects of glucagon on adenosine 3’, 5’-monophosphate and guanosine 3’, 5’-monophosphate in human plasma and urine. J Clin Invest 49: 2237–2244

    Article  Google Scholar 

  19. Mulvehill JB, Hui YS, Barnes LD, Palumbo PJ, Dousa TP (1976) Glucagon sensitive adenylcyclase in human renal medulla. J Clin Endocrinol Metab 42: 380–386

    Article  PubMed  CAS  Google Scholar 

  20. Abe Y (1971) Intrarenal blood flow distribution and autoregulation of blood flow and glomerular filtration rate. Jpn Circ J 35: 1163–1173

    Article  PubMed  CAS  Google Scholar 

  21. Osswald H, Spielman SW, Knox GF (1978) Mechanism of adenosine mediated decreases in glomerular filtration rate in dogs. Circ Res 43: 465–469

    Article  PubMed  CAS  Google Scholar 

  22. Murray RD, Churchill CP (1985) Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther 232: 189–193

    PubMed  CAS  Google Scholar 

  23. Klabunde RE, Althouse DG (1981) Adenosine metabolism in dog whole blood: effects of dipyridamole. Life Sci 28: 2631–2641

    Article  PubMed  CAS  Google Scholar 

  24. Bunag RD, Douglas CR, Imai S, Berne RM (1964) Influence of a pyrimido-pyrimidine derivative on determination of adenosine by blood. Circ Res 15: 83–88

    Article  PubMed  CAS  Google Scholar 

  25. Imanishi M, Abe Y, Okahara T, Yukimura T, Yamamoto K (1980) Effects of prostaglandin 12, and E2 on renal hemodynamics and function and renin release. Jpn Circ J 44: 875–882

    Article  PubMed  Google Scholar 

  26. Tamaki T, Hura CE, Kunau RT (1989) Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors. Am J Physiol 256: H626 - H629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Aki, Y., Tamaki, T., Kiyomoto, H., Iwao, H., Abe, Y. (1991). Regulation of Renal Vascular Resistance: Studies Using Pharmacological Probes. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics