Skip to main content

Generation and Validation of Virtual Auditory Space

  • Chapter
Virtual Auditory Space: Generation and Applications

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

The aim in generating virtual auditory space (VAS) is to create the illusion of a natural free-field sound using a closed-field sound system (see Fig. 1.1, chapter 1) or in another free-field environment, using a loudspeaker system. This technique relies on the general assumption that identical stimuli at a listener’s eardrum will be perceived identically independent of their physical mode of delivery. However, it is important to note that the context of an auditory stimulus also plays a role in the percept generated in the listeners (chapter 1, section 2.1.2) and that auditory and nonauditory factors contribute to this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gierlich HW. The application of binaural technology. Appl Acoust 1992; 36: 219–143.

    Article  Google Scholar 

  2. Plenge G. On the differences between localization and lateralization. J Acoust Soc Am 1974; 56: 944–951.

    Article  PubMed  CAS  Google Scholar 

  3. Butler RA, Belendiuk K. Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 1977; 61: 1264–1269.

    Article  PubMed  CAS  Google Scholar 

  4. Blauert J. Spatial Hearing: The psychophysics of human sound localization. Cambridge, Mass.: MIT Press, 1983.

    Google Scholar 

  5. Burkhardt MD, Sachs RM. Anthropometric manikin for acoustic research. J Acoust Soc Am 1975; 58: 214–222.

    Article  Google Scholar 

  6. Gierlich HW, Genuit K. Processing artificial-head recordings. J Audio Eng Soc 1989; 37: 34–39.

    Google Scholar 

  7. Moller H. Fundamentals of binaural technology. Appl Acoust 1992; 36: 172–218.

    Article  Google Scholar 

  8. Hammershoi D, Sandvad J. Binaural auralization. Simulating free field conditions by headphones. Presented at Audio Engineering Society. Amsterdam: 1994. 1–19.

    Google Scholar 

  9. Wightman FL, Kistler DJ. Headphone simulation of free field listening. I: Stimulus synthesis. J Acoust Soc Am 1989; 85: 858–867.

    Article  PubMed  CAS  Google Scholar 

  10. Morimoto M, Ando Y. On the simulation of sound localization. J Acoust Soc Jpn 1980; 1: 167–174.

    Article  Google Scholar 

  11. Pralong D, Carlile S. Measuring the human head-related transfer functions: A novel method for the construction and calibration of a miniature “in-ear” recording system. J Acoust Soc Am 1994; 95: 3435–3444.

    Article  PubMed  CAS  Google Scholar 

  12. Glasberg BR, Moore BC. Derivation of auditory filter shapes from notched-noise data. Hearing Res 1990; 47: 103–138.

    Article  CAS  Google Scholar 

  13. Hellstrom P, Axelsson A. Miniature microphone probe tube measurements in the external auditory canal. J Acoust Soc Am 1993; 93: 907–919.

    Article  PubMed  CAS  Google Scholar 

  14. Wightman FL, Kistler DJ. Headphone simulation of free field listening. II: Psychophysical validation. J Acoust Soc Am 1989; 85: 868–878.

    Article  PubMed  CAS  Google Scholar 

  15. Shaw EAG. The acoustics of the external ear. In: Studebaker GA, Hochberg I, ed. Acoustical factors affecting hearing aid performance. Balitmore: University Park Press, 1980: 109–125.

    Google Scholar 

  16. Rabbitt RD, Friedrich MT. Ear canal cross-sectional pressure distributions: mathematical analysis and computation. J Acoust Soc Am 1991; 89: 2379–2390.

    Article  PubMed  CAS  Google Scholar 

  17. Khanna SM, Stinson MR. Specification of the acoustical input to the ear at high frequencies. J Acoust Soc Am 1985; 77: 577–589.

    Article  PubMed  CAS  Google Scholar 

  18. Stinson MR, Khanna SM. Spatial distribution of sound pressure and energy flow in the ear canals of cats. J Acoust Soc Am 1994; 96: 170–181.

    Article  PubMed  CAS  Google Scholar 

  19. Stinson MR, Lawton BW. Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 1989; 85: 2492–2503.

    Article  PubMed  CAS  Google Scholar 

  20. Rabbitt RD, Holmes MH. Three dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. J Acoust Soc Am 1988; 83: 1064–1080.

    Article  PubMed  CAS  Google Scholar 

  21. Chan JCK, Geisler CD. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal. J Acoust Soc Am 1990; 87: 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  22. Gilman S, Dirks DD. Acoustics of ear canal measurements of eardrum SPL in simulators. J Acoust Soc Am 1986; 80: 783–793.

    Article  PubMed  CAS  Google Scholar 

  23. Middlebrooks JC, Makous JC, Green DM. Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 1989; 86: 89–108.

    Article  PubMed  CAS  Google Scholar 

  24. Shaw EAG, Teranishi R. Sound pressure generated in an external-ear replica and real human ears by a nearby point source. J Acoust Soc Am 1968; 44: 240–249.

    Article  PubMed  CAS  Google Scholar 

  25. Shaw EAG. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 1974; 56: 1848–1861.

    Article  PubMed  CAS  Google Scholar 

  26. Moller H, Sorensen MF, Hammershei D et al. Head-related transfer functions of human subjects. J Audio Eng Soc 1995; 43: 300–321.

    Google Scholar 

  27. Carlile S, Pralong D. The location-dependent nature of perceptually salient features of the human head-related transfer function. J Acoust Soc Am 1994; 95: 3445–3459.

    Article  Google Scholar 

  28. Moller H, Hammershoi D, Jensen CB et al. Transfer characteristics of headphones measured on human ears. J Audio Eng Soc 1995; 43: 203–217.

    Google Scholar 

  29. Wiener FM, Ross DA. The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 1946; 18: 401–408.

    Article  Google Scholar 

  30. Mehrgardt S, Mellert V. Transformation characteristics of the human external ear. J Acoust Soc Am 1977; 61: 1567–1576.

    Article  PubMed  CAS  Google Scholar 

  31. Shaw EAG. The external ear: new knowledge. In: Dalsgaad SC, ed. Earmolds and associated problems. Proceedings of the Seventh Danavox Symposium. 1975: 24–50.

    Google Scholar 

  32. Shaw EAG. 1979 Rayleigh Medal lecture: the elusive connection. In: Gatehouse RW, ed. Localisation of sound: theory and application. Connecticut: Amphora Press, 1982: 13–27.

    Google Scholar 

  33. Middlebrooks JC, Green DM. Directional dependence of interaural envelope delays. J Acoust Soc Am 1990; 87: 2149–2162.

    Article  PubMed  CAS  Google Scholar 

  34. Lawton BW, Stinson MR. Standing wave patterns in the human ear canal used for estimation of acoustic energy reflectance at the eardrum. J Acoust Soc Am 1986; 79: 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  35. Begault DR. Perceptual effects of synthetic reverberation on three-dimensional audio systems. J Audio Eng Soc 1992; 40: 895–904.

    Google Scholar 

  36. Shaw EAG. The external ear. In: Keidel WD, Neff WD, ed. Handbook of Sensory physiology. Berlin: Springer-Verlag, 1974: 455–490.

    Google Scholar 

  37. Schroeder MR. Synthesis of low-peak-factors signals and binary sequences with low autocorrelation. IEE Trans Inform Theory 1970; IT-16:85–89.

    Google Scholar 

  38. Zhou B, Green DM, Middlebrooks JC. Characterization of external ear impulse responses using Golay codes. J Acoust Soc Am 1992; 92: 1169–1171.

    Article  PubMed  CAS  Google Scholar 

  39. Theile G. On the standardization of the frequency response of high-quality studio headphones. J Audio Eng Soc 1986; 34: 956–969.

    Google Scholar 

  40. Villchur E. Free-field calibration of earphones. J Acoust Soc Am 1969; 46: 1526–1534.

    Article  Google Scholar 

  41. Wenzel EM, Arruda M, Kistler DJ et al. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am 1993; 94: 111–123.

    Article  PubMed  CAS  Google Scholar 

  42. Wightman FL, Kistler DJ. Sound localization. In: Yost WA, Popper AN, Fay RR, ed. Human psychophysics. New York: Springer-Verlag, 1993: 155–192.

    Chapter  Google Scholar 

  43. Butler RA. Monaural and binaural localization of noise burst vertically in the median sagittal plane. J Audit Res 1969; 3: 230–235.

    Google Scholar 

  44. Blauert J. Sound localization in the median plane. Acustica 1969–70; 22: 205–213.

    Google Scholar 

  45. Hebrank J, Wright D. Are the two ears necessary for localization of sound sources on the median plane? J Acoust Soc Am 1974; 56: 935–938.

    Article  PubMed  CAS  Google Scholar 

  46. Hebrank J, Wright D. Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 1974; 56: 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  47. Belendiuk K, Butler RA. Monaural location of low-pass noise bands in the horizontal plane. J Acoust Soc Am 1975; 58: 701–705.

    Article  PubMed  CAS  Google Scholar 

  48. Hartman WM. Localization of sound in rooms. J Acoust Soc Am 1983; 74: 1380–1391.

    Article  Google Scholar 

  49. Musicant AD, Butler RA. Influence of monaural spectral cues on binaural localization. J Acoust Soc Am 1985; 77: 202–208.

    Article  PubMed  CAS  Google Scholar 

  50. Makous JC, Middlebrooks JC. Two-dimensional sound localization by human listeners. J Acoust Soc Am 1990; 87: 2188–2200.

    Article  PubMed  CAS  Google Scholar 

  51. Perrett S, Noble W. Available response choices affect localization of sound. Perception and Psychophysics 1995; 57: 150–158.

    Article  PubMed  CAS  Google Scholar 

  52. Butler RA, Humanski RA, Musicant AD. Binaural and monaural localization of sound in two-dimensional space. Percep 1990; 19: 241–256.

    Article  CAS  Google Scholar 

  53. Butler RA, Humanski RA. Localization of sound in the vertical plane with and without high-frequency spectral cues. Perception and Psycho-physics 1992; 51: 182–186.

    Article  CAS  Google Scholar 

  54. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space I. Normal hearing conditions. Perception 1984; 13: 581–600.

    Article  PubMed  CAS  Google Scholar 

  55. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space II: Pinna cues absent. Percep 1984; 13: 601–617.

    Article  CAS  Google Scholar 

  56. Oldfield SR, Parker SPA. Acuity of sound localization: a topography of auditory space. III Monaural hearing conditions. Percep 1986; 15: 67–81.

    Article  CAS  Google Scholar 

  57. Good MD, Gilkey RH. Auditory localization in noise. I. The effects of signal to noise ratio. J Acoust Soc Am 1994; 95: 28–96.

    Google Scholar 

  58. Good MD, Gilkey RH. Auditory localization in noise. II. The effects of masker location. J Acoust Soc Am 1994; 95: 28–96.

    Google Scholar 

  59. Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 1992; 91: 1648–1661.

    Article  PubMed  CAS  Google Scholar 

  60. Kistler DJ, Wightman FL. A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. J Acoust Soc Am 1992; 91: 1637–1647.

    Article  PubMed  CAS  Google Scholar 

  61. Carlile S, Leong P, Hyams S et al. Distribution of errors in auditory localisation. Proceedings of the Australian Neuroscience Society, 1996; (in press).

    Google Scholar 

  62. Fisher NI, Lewis T, Embleton BJJ. Statistical analysis of spherical data. Cambridge: Cambridge University Press, 1987.

    Book  Google Scholar 

  63. Wenzel EM. Localization in virtual acoustic displays. Presence 1992; 1: 80–105.

    Google Scholar 

  64. Carlile S, Pralong D. Validation of high-fidelity virtual auditory space. Br J Audiol, (in press).

    Google Scholar 

  65. Wightman F, Kistler D, Andersen K. Reassessment of the role of head movements in human sound localization. J Acoust Soc Am 1994; 95: 3003–3004.

    Article  Google Scholar 

  66. Wenzel E, Wightman F, Kistler D. Acoustic origins of individual differences in sound localization behavior. J Acoust Soc Am Suppl 1 1988; 84: S79.

    Article  Google Scholar 

  67. Wenzel EM. Issues in the development of virtual acoustic environments. J Acoust Soc Am 1991; 92: 23–32.

    Google Scholar 

  68. Begault DR, Wenzel EM. Headphone localization of speech. Human Factors 1993; 35: 361–376.

    PubMed  CAS  Google Scholar 

  69. Wenzel EM, Arruda M, Kistler DJ et al. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am 1993; 94: 111–123.

    Article  PubMed  CAS  Google Scholar 

  70. Pralong D, Carlile S. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. Proc Australian Neurosci Soc 1995; 6: 209.

    Google Scholar 

  71. Searle CL, Braida LD, Cuddy DR et al. Binaural pinna disparity: another auditory localization cue. J Acoust Soc Am 1975; 57: 448–455.

    Article  PubMed  CAS  Google Scholar 

  72. Middlebrooks JC, Green DM. Sound localization by human listeners. Annu Rev Psychol 1991; 42: 135–159.

    Article  PubMed  CAS  Google Scholar 

  73. Durlach N, Rigopulos A, Pang XD, Woods WS, Kulkarni A, Colburn HS, Wenzel EM. On the externalization of auditory images. Presence 1992; 1: 251–257.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pralong, D., Carlile, S. (1996). Generation and Validation of Virtual Auditory Space. In: Virtual Auditory Space: Generation and Applications. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22594-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22594-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22596-7

  • Online ISBN: 978-3-662-22594-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics