Skip to main content

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

The biochemical and immunological properties of colon cancer mucins differ considerably from the normal. Colon cancer tissue produces glycoproteins and mucins with abnormal glycosylation patterns that may resemble fetal patterns.1–7 In addition, the genes encoding the peptide moieties of glycoproteins and mucins may undergo alterations of expression in colon cancer. These events may be related to malignant potential and development of the tumor; the mechanisms inducing these changes are still not understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Hanisch F-G, Heimbiichel G, Baldus SE et al. Monoclonal antibody FW6 defines an epitope on a3/4 monofucosylated poly-lactosaminoglycans expressed by fetal and colon carcinoma-associated mucins. Cancer Res 1993; 53: 4367–4375.

    PubMed  CAS  Google Scholar 

  2. Garcia M, Seigner C, Bastid C et al. Carcinoembryonic antigen has a different molecular weight in normal colon and in cancer cells due to N-glycosylation differences. Cancer Res 1991; 51: 5679–5686.

    PubMed  CAS  Google Scholar 

  3. Cooper H, Malecha M, Bass C et al. Expression of blood group antigens H-2, Ley, and sialylated-Lea in human colorectal carcinoma. Am J Pathol 1991; 138: 103–110.

    PubMed  CAS  Google Scholar 

  4. Lance P, Lev R. Colonic oligosaccharide structures deduced from lectin-binding studies before and after desialylation. Hum Pathol 1991; 22: 307–312.

    Article  PubMed  CAS  Google Scholar 

  5. Pilbrow SJ, Hertzog PJ, Linnane AW. The adenoma-carcinoma sequence in the colo-rectum-early appearance of a hierarchy of small intestinal mucin antigen (SIMA) epitopes and correlation with malignant potential. Br J Cancer 1992; 66: 748–757.

    Article  PubMed  CAS  Google Scholar 

  6. Yuan M, Itzkowitz S, Boland C et al. Comparison of T-antigen expression in normal, pre-malignant and malignant human colonic tissue using lectin and antibody immunohis-tochemistry. Cancer Res 1986; 46: 4841–4847.

    PubMed  CAS  Google Scholar 

  7. Itzkowitz S. Caarbohydrate changes in colon carcinoma. In:Carbohydrate Pathology. Dabelsteen E, Clausen H eds. Copenhagen: Munksgaard, 1992; APMIS Suppl. 27, 100: 173–180.

    Google Scholar 

  8. Fernandes B, Sagman U, Auger M et al. (31–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 1991; 51: 718–723.

    PubMed  CAS  Google Scholar 

  9. Dennis J, Laferté S, Yagel S et al. Aspar-agine-linked oligosaccharides associated with metastatic cancer. Cancer Cells 1989; 1: 87–92.

    PubMed  CAS  Google Scholar 

  10. Yamori T, Kimura H, Stewart K et al. Differential production of high molecular weight sulfated glycoproteins in normal colonic mucosa, primary colon carcinoma, and metastases. Cancer Res 1987; 47: 2741–2747.

    PubMed  CAS  Google Scholar 

  11. Yamori T, Ota DM, Cleary KR et al. Monoclonal antibody against human colonic sulfomucin:immunochemical detection of its binding sites in colonic mucosa, colorectal primary carcinoma, and metastases. Cancer Res 1989; 49: 887–894.

    PubMed  CAS  Google Scholar 

  12. Nakasaki H, Mi tomi T, Noto T et al. Mosaicism in the expression of tumor-asso-ciated carbohydrate antigens in human colonic and gastric cancers. Cancer Res 1989; 49: 3662–3669.

    PubMed  CAS  Google Scholar 

  13. Hanski C, Hanski M-L, Zimmer T et al. Characterization of the major sialyl-Lewisx positive mucins present in colon, colon carcinoma, and sera of patients with colorectal cancer. Cancer Res 1995; 55: 928–933.

    PubMed  CAS  Google Scholar 

  14. Boland C, Montgomery C, Kim Y. Alterations in human colonic mucin occurring with cellular differentiation and malignant transformation. Proc Natl Acad Sci USA 1982; 79: 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  15. Bresalier RS, Boland CR, Kim YS. Regional differences in normal and cancer-associated glycoconjugates of the human colon. J Natl Cancer Inst 1985; 75: 249–255.

    PubMed  CAS  Google Scholar 

  16. Hoskins L. Degradation of mucus glycoproteins in the gastrointestinal tract. In: Horowitz M, Pigman E eds. The Glycoconjugates Vol 2. New York: Academic Press, 1978: 235–253.

    Chapter  Google Scholar 

  17. Kim YS, Isaacs R. Glycoprotein metabolism in inflammatory and neoplastic diseases of the human colon. Cancer Res 1975; 35: 2092–2097.

    PubMed  CAS  Google Scholar 

  18. Boland CR, Deshmukh GD. The carbohydrate composition of mucin in colonic cancer. Gastroenterology 1990; 98: 1170–1177.

    PubMed  CAS  Google Scholar 

  19. Shimamoto C, Deshmukh GD, Rigot WL et al. Analysis of cancer-associated colonic mucin by ion-exchange chromatography: evidence for a mucin species of lower molecular charge and weight in cancer. Biochim Biophys Acta 1989; 991: 284–295.

    Article  PubMed  CAS  Google Scholar 

  20. Orntoft T, Harving N, Langkilde N. O- linked mucin-type glycoproteins in normal and malignant colon mucosa:lack of T antigen expression and accumulation of Tn and sialosyl-Tn antigens in carcinomas. Int J Cancer 1990; 45: 666–672.

    Article  PubMed  CAS  Google Scholar 

  21. Itzkowitz S, Yuan M, Montgomery C et al. Expression of Tn. sialosyl-Tn and T antigens in human colon cancer. Cancer Res 1989; 49: 197–204.

    PubMed  CAS  Google Scholar 

  22. Itzkowitz SH, Bloom EJ, Kokal WA et al. Sialosyl-Tn:a novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer 1990; 66: 1960–1966.

    Article  PubMed  CAS  Google Scholar 

  23. Jass JR, Allison LM, Edgar S. Monoclonal antibody TKH2 to the cancer-associated epitope sialosyl Tn shows cross-reactivity with variants of normal colorectal goblet cell mucin. Pathol 1994; 26: 418–422.

    Article  CAS  Google Scholar 

  24. Varki A. Diversity in the sialic acids. Glycobiology 1992; 2: 25–40.

    Article  PubMed  CAS  Google Scholar 

  25. Allen D, Connolly N, Biggart J. Mucin profiles in ulcerative colitis with dysplasia and carcinoma. Histopathology 1988; 13: 413–424.

    Article  PubMed  CAS  Google Scholar 

  26. Hutchins J, Reading C, Giavazzi R et al. Distribution of mono-, di-and tri-O-acety-lated sialic acids in normal and neoplastic colon. Cancer Res 1988; 48: 483–489.

    PubMed  CAS  Google Scholar 

  27. Corfield A, Wagner S, Clamp J et al. Mucin degradation in the human colon. Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase and glycosulfatase activities by strains of fecal bacteria. Infec Immun 1992; 60: 3971–3978.

    CAS  Google Scholar 

  28. Jass J, Roberton A. Colorectal mucin histochemistry in health and disease:a critical review. Pathol Internat 1994; 44: 487–504.

    Article  CAS  Google Scholar 

  29. Muchmore E A, Varki NM, Fukuda M et al. Developmental regulation of sialic acid modifications in rat and human colon. FASEB J 1987; 1: 229–235.

    CAS  Google Scholar 

  30. Vavasseur F, Dole K, Yang J et al. O-gly-can biosynthesis in human colorectal adenoma cells during progression to cancer. Eur J Biochem 1994; 222: 415–424.

    Article  PubMed  CAS  Google Scholar 

  31. Jass JR, Edgar S. Unicryptal loss of heterozygosity in hereditary non-polyposis colorectal cancer. Pathology 1994; 26: 414–417.

    Article  PubMed  CAS  Google Scholar 

  32. Ogata S, Ho I, Chen A et al. Tumor associated sialylated antigens are constitutively expressed in normal human colonic mucosa. Cancer Res 1995; 55: 1869–1874.

    PubMed  CAS  Google Scholar 

  33. Higashi H, Hirabayashi Y, Fukui Y et al. Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-asso-ciated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res 1985; 45: 3796–3802.

    PubMed  CAS  Google Scholar 

  34. Hirabayashi Y, Kasakura H, Matsumoto M et al. Specific expression of unusual GM2 ganglioside with Hanganutziu-Deicher antigen activity on human colon cancers. Jap J Cancer Res 1987; 78: 251–260.

    Google Scholar 

  35. Miyoshi I, Higashi H, Hirabayashi Y et al. Detection of 4–0-acetyl-N-glycolylneura-minyl lactosylceramide as one of tumor-associated antigens in human colon cancer tissues by specific antibody. Molec Immunol 1986; 23: 631–638.

    Article  CAS  Google Scholar 

  36. Sata T, Roth J, Zuber C et al. Expression of a2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. Am J Pathol 1991; 139: 1435–1448.

    PubMed  CAS  Google Scholar 

  37. Baeckstrom D, Hansson GC, Nilsson O et al. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Le a epitope on distinct core proteins. J Biol Chem 1991; 266: 21537–21547.

    PubMed  CAS  Google Scholar 

  38. Schoentag R, Primus FJ, Kuhns W. ABH and Lewis blood group expression in colorectal carcinoma. Cancer Res 1987; 47: 1695–1700.

    PubMed  CAS  Google Scholar 

  39. Shi ZR, Mclntyre J, Knowles BB et al. Expression of a carbohydrate differentiation antigen, stage-specific embryonic antigen 1, in human colonic adenocarcinoma. Cancer Res 1984; 44: 1142–1147.

    PubMed  CAS  Google Scholar 

  40. Fukushima K, Hirota M, Terasaki PI et al. Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res 1984; 44: 5279–5285.

    PubMed  CAS  Google Scholar 

  41. Kim YS, Yuan M, Itzkowitz SH et al. Expression of Lex and extended Ley blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 1986; 46: 5985–5992.

    PubMed  CAS  Google Scholar 

  42. Naitoh H, Nakajima T, Nagamachi Y et al. A clinicopathological evaluation of anti-fucosylated antigens antibody (YB-2) in colorectal carcinoma. Glycosyl Dis 1994; 1: 31–36.

    Google Scholar 

  43. Hakomori S, Nudelman E, Levery S et al. Novel fucolipids accumulating in human adenocarcinoma. I, glycolipids with di-or trifucosylated type 2 chain. J Biol Chem 1984; 259: 4672–4680.

    PubMed  CAS  Google Scholar 

  44. Itzkowitz S, Yuan M, Fukushi Y et al. Lewisx and sialylated Lewisx -related antigen expression in human malignant and non-ma-lignant colonic tissue. Cancer Res 1986; 46: 2627–2632.

    PubMed  CAS  Google Scholar 

  45. Hanski C, Drechsler K, Hanisch F-G et al. Altered glycosylation of the MUC-1 protein core contributes to the colon carcinoma-associated increase of mucin-bound sialyl- Lewisx expression. Cancer Res 1993; 53: 4082–4088.

    PubMed  CAS  Google Scholar 

  46. Nakamori S, Kameyama M, Imaoka S et al. Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma:clinicopathological and immunohistochemical study. Cancer Res 1993; 53: 3632–3637.

    PubMed  CAS  Google Scholar 

  47. Hoff S, Matsushita Y, Qta D et al. Increased expression of sialyl-dimeric Lex antigen in liver metastases of human colorectal carcinoma. Cancer Res 1989; 49: 6883–6888.

    PubMed  CAS  Google Scholar 

  48. Matsushita Y, Nakamori S, Seftor EA et al. Human colon carcinoma cells with increased invasive capacity obtained by selection for sialyl-dimeric Lex antigen. Exp Cell Res 1991; 196: 20–25.

    Article  PubMed  CAS  Google Scholar 

  49. Holmes EH, Ostrander GK, Clausen H et al. Oncofetal expression of Lex carbohydrate antigens in human colonic adenocarcinomas. J Biol Chem 1987; 262: 11331–11338.

    PubMed  CAS  Google Scholar 

  50. Stroup GB, Anumula KR, Kline TF et al. Identification and characterization of two distinct a-(l-3)-L-fucosyltransferase activities in human colon carcinoma. Cancer Res 1990; 50: 6787–6792.

    PubMed  CAS  Google Scholar 

  51. Tytgat K, Biiller H, Opdam F et al. Biosynthesis of human colonic mucin:MUC2 is the prominent secretory mucin. Gastroenterology 1994; 107: 1352–1366.

    PubMed  CAS  Google Scholar 

  52. Blank M, Klussmann E, Kriiger-Krasagakes S et al. Expression of MUC2 mucin in colorectal adenomas of different histological types. Int J Cancer 1994; 59: 301–306.

    Article  PubMed  CAS  Google Scholar 

  53. Buisine M-P, Janin A, Maunoury V et al. Aberrant expression of a human mucin gene (MUC5AC) in rectosigmoid villous adenoma. Gastroenterol 1996; 110: 84–91.

    Article  CAS  Google Scholar 

  54. Nakamori S, Ota DM, Cleary KR et al. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 1994; 106: 353–361.

    PubMed  CAS  Google Scholar 

  55. Ho SB, Niehans GA, Lyftogt C et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993; 53: 641–651.

    PubMed  CAS  Google Scholar 

  56. Yang J, Byrd JC, Siddiki B et al. Alterations of O-glycan biosynthesis in human colon-cancer tissues. Glycobiology 1994; 4: 873–884.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan M, Itzkowitz S, Boland C et al. Comparison of T-antigen expression in normal, pre-malignant and malignant human colonic tissue using lectin and antibody immunohis-tochemistry. Cancer Res 1986; 46: 4841–4847.

    PubMed  CAS  Google Scholar 

  58. Baker MA, Kanani A, Brockhausen I et al. Presence of cytidine 5’-monophospho-N- acetylneuraminic acid:Gal(31–3GalNAc-R a(2–3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. Cancer Res 1987; 47: 2763–2766.

    PubMed  CAS  Google Scholar 

  59. Brockhausen I, Yang J-M, Burchell J et al. Mechanisms underlying aberrant glycosyla-tion of MUC1 mucin in breast cancer cells. Eur J Biochem 1995; 233: 607–617.

    Article  PubMed  CAS  Google Scholar 

  60. Springer GF. Blood group T and Tn antigens are universal, clonal, epithelial cell adhesive, autoimmunogenic carcinoma markers. Progress in Clin & Biol Res 1983; 133: 157–166.

    CAS  Google Scholar 

  61. Cooper HS. Peanut lectin-binding sites in large bowel carcinoma. Lab Invest 1982; 47: 383–390.

    PubMed  CAS  Google Scholar 

  62. King M, Chan A, Roe R et al. Two different glycosyltransferase defects that result in GalNAca-O-peptide (Tn) expression. Glycobiology 1994; 4: 267–279.

    Article  PubMed  CAS  Google Scholar 

  63. Miyake M, Kohno N, Nudelman ED et al. Human IgG3 mono-clonal antibody directed to an unbranched repeating Type 2 chain (Galpl -4GlcN Acp 1–3 Galp 1–4GlcN Acp 1–3Galpl-R) which is highly expressed in colonic and hepatocellular carcinoma. Cancer Res 1989; 49: 5689–5695.

    PubMed  CAS  Google Scholar 

  64. Orntoft TF, Greenwell P, Clausen H et al. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewisb blood group antigens in human colon by a-2-L- fucosylation. Gut 1991; 32: 287–293.

    Article  PubMed  CAS  Google Scholar 

  65. Irimura T, Ota D, Cleary K. Ulex europeus agglutinin I-reactive high molecular weight glycoproteins of adenocarcinoma of distal colon and rectum and their possible relationship with metastatic potential. Cancer Res 1987; 47: 881–889.

    PubMed  CAS  Google Scholar 

  66. Yazawa S, Nakamura J, Asao T et al. Aberrant al->2 fucosyltransferases found in human colorectal carcinoma involved in the accumulation of Leb and Y antigens in colorectal tumors. Jpn J Cancer Res 1993; 84: 989–995.

    Article  PubMed  CAS  Google Scholar 

  67. Sun J, Thurin J, Cooper HS et al. Elevated expression of H type GDP-L-fucose:p-D- galactoside a-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci USA 1995; 92: 5724–5728.

    Article  PubMed  CAS  Google Scholar 

  68. Yuan M, Itzkowitz SH, Palekar A et al. Distribution of blood group antigens A, B, H, Lea and Leb in normal, fetal, and malignant colonic tissue. Cancer Res 1985; 45:4499–511.

    Google Scholar 

  69. Kuhns WJ, Schoentag R. Carcinoma-related alterations of glycosyltransferases in human tissues. Cancer Res 1981; 41: 2767–2772.

    PubMed  CAS  Google Scholar 

  70. Yazawa S, Madiyalakan R, Izawa H et al. Cancer-associated elevation of a(l-3)-L- fucosyltransferase activity in human serum. Cancer 1988; 62: 516–520.

    Article  PubMed  CAS  Google Scholar 

  71. Orntoft T, Harving N, Langkilde N. O- linked mucin-type glycoproteins in normal and malignant colon mucosa:lack of T antigen expression and accumulation of Tn and sialosyl-Tn antigens in carcinomas. Int J Cancer 1990; 45: 666–672.

    Article  PubMed  CAS  Google Scholar 

  72. Corfield AP, Clamp JR, Casey AD et al. Characterization of a sialic acid-rich mucus glycoprotein secreted by a premalignant human colorectal adenoma cell line. Int J Cancer 1990; 46: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  73. Dall’Olio F, Malagolini N, Di Stefano G et al. Increased CMP-NeuAc:Gaipi-4GlcNAc- R a2–6 sialyltransferase activity in human colorectal cancer tissues. Int J Cancer 1989; 44: 434–439.

    Article  PubMed  Google Scholar 

  74. Irimura T, Wynn D, Hager L et al. Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res 1991; 51: 5728–5735.

    PubMed  CAS  Google Scholar 

  75. Kuhns W, Jain R, Matta K et al. Characterization of a novel mucin sulfotransferase activity synthesizing sulfated O-glycan core I, 3-sulfate-Galpl-3GalNAca-R. Glycobiol 1995; 5: 689–697.

    Article  CAS  Google Scholar 

  76. Hounsell EF, Lawson AM, Feeney J et al. Structural analysis of the O-glycosidically linked core-region oligosaccharides of human meconium glycoproteins which express oncofoetal antigens. Eur J Biochem 1985; 148: 367–377.

    Article  PubMed  CAS  Google Scholar 

  77. Kurosaka A, Nakajima H, Funakoshi I et al. Structures of the major oligosaccharides from human rectal adenocarcinoma glycoprotein. J Biol Chem 1983; 258: 11594–11598.

    PubMed  CAS  Google Scholar 

  78. Kurosaka A, Funakoshi I, Matsuyama M et al. UDP-GalNAc: GalNAc-mucin a-N- acetylgalactosamine transferase activity in human intestinal cancerous tissues. FEBS Lett 1985; 190: 259–262.

    Article  PubMed  CAS  Google Scholar 

  79. Schoentag R, Williams V, Kuhns W. The distribution of blood group substance H and CEA in colorectal carcinoma. Cancer 1984; 53: 503–509.

    Article  PubMed  CAS  Google Scholar 

  80. Bali JP, Magous R, Lecou C et al. Presence of blood group H antigen on a carcino-embryonic antigen, and its enzymatic modification into blood group A and B specificities. Cancer Res 1976; 36: 2124–2129.

    PubMed  CAS  Google Scholar 

  81. Kuhns W, Primus F. Alteration of blood groups and blood group precursors in cancer. Prog Clin Biochem Med 1985; 2: 49–98.

    Article  Google Scholar 

  82. Niv Y, Schwartz B, Amsalem Y et al. Human HT-29 colon carcinoma cells:mucin production and tumorigenicity in relation to growth phases. Anticancer Res 1995; 15: 2023–2028.

    PubMed  CAS  Google Scholar 

  83. Dahiya R, Kwak K-S, Byrd JC et al. Mucin synthesis and secretion in various human epithelial cancer cell lines that express the MUC-1 mucin gene. Cancer Res 1993; 53: 1437–1443.

    PubMed  CAS  Google Scholar 

  84. Ogata S, Uehara H, Chen A et al. Mucin gene expression in colonic tissues and cell lines. Cancer Res 1992; 52: 5971–5978.

    PubMed  CAS  Google Scholar 

  85. Devine PL, Birrell GW, Whitehead RH et al. Expression of MUC1 and MUC2 mucins by human tumor cell lines. Tumor Biol 1992; 13: 268–277.

    Article  CAS  Google Scholar 

  86. Hollingsworth MA, Strawhecker JM, Caffrey TC et al. Expression of MUC1, MUC2, MUC3 and MUC4 mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer 1994; 57: 198–203.

    Article  PubMed  CAS  Google Scholar 

  87. Mack DR, Hollingsworth MA. Alteration in expression of MUC2 and MUC3 mRNA levels in HT29 colonic carcinoma cells. Biochem Biophys Res Comm 1994; 199: 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  88. Velcich A, Augenlicht LH. Regulated expression of an intestinal mucin gene in HT29 colonic carcinoma cells. J Biol Chem 1993; 268: 13956–13961.

    PubMed  CAS  Google Scholar 

  89. Lesuffleur T, Porchet N, Aubert J-P et al. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 1993; 106: 771–783.

    PubMed  CAS  Google Scholar 

  90. Bresalier RS, Niv Y, Byrd JC et al. Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Invest 1991; 87: 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  91. Symonds D, Vickery A. Mucinous carcinoma of the colon and rectum. Cancer 1976; 37: 1891–1900.

    Article  PubMed  CAS  Google Scholar 

  92. Dahiya R, Lesuffleur T, Kwak K-S et al. Expression and characterization of mucins associated with the resistance to methotrexate of human colonic adenocarcinoma cell line HT29. Cancer Res 1992; 52: 4655–4662.

    PubMed  CAS  Google Scholar 

  93. Dall’Olio F, Malagolini N, Guerrini S et al. Resistance to methotrexate is associated with selective changes of a2,6- and a2,3- sialyltransferase activities toward N- acetyllactosaminic sequences in human colon cancer cell line HT-29. Biochem and Biophys Res Comm 1993; 196: 714–720.

    Article  Google Scholar 

  94. Dohi D, Sutton R, Frazier M et al. Regulation of sialomucin production in colon carcinoma cells. J Biol Chem 1993; 268: 10133–10138.

    PubMed  CAS  Google Scholar 

  95. Capon C, Laboisse CL, Wieruszeski J-M et al. Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL.16E. J Biol Chem 1992; 267: 19248–19257.

    PubMed  CAS  Google Scholar 

  96. Brockhausen I, Romero PA, Herscovics A. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1991; 51: 3136–3142.

    PubMed  CAS  Google Scholar 

  97. Vavasseur F, Yang J-M, Dole K et al. Synthesis of O-glycan core 3:Characterization of UDP-GlcNAc:GalNAc p3-N-acetyl-glucosaminyltransferase activity from colonic tissues and lack of the activity in human cancer cell lines. Glycobiology 1995; 5: 351–357.

    Article  PubMed  CAS  Google Scholar 

  98. Youakim A, Romero P, Yee K et al. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1989; 49: 6889–6895.

    PubMed  CAS  Google Scholar 

  99. Youakim A, Herscovics A. Differentiation associated decrease in the proportion of polyfucosylated polylactosaminoglycans of CaCo-2 human colonic adenocarcinoma cells. Biochem J 1987; 247: 299–306.

    PubMed  CAS  Google Scholar 

  100. Narasimhan S. Control of glycoprotein synthesis VII. UDP-GlcNAc:glycopeptide p4-N- acetylglucosaminyltransferase III, an enzyme from hen oviduct which adds GlcNAc in (31–4 linkage to the p-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 1982; 257: 10235–10242.

    PubMed  CAS  Google Scholar 

  101. Kuhns W, Rutz V, Paulsen H et al. Processing O-glycan core 1, Galpl-3GalNAca- R. Specificities of core 2, UDP-GlcNAc: Galp 1–3GalNAc-R(GlcNAc to GalNAc) p6- N-acetylglucosaminyltransferase and CMP- sialic acid:Galpl -3GalNAc-R a3- sialyltransferase. Glycoconj J 1993; 10: 381–394.

    Article  PubMed  CAS  Google Scholar 

  102. Dall’Olio F, Malagolini N, Di Stefano G et al. Postnatal development of rat colon epithelial cells is associated with changes in the expression of the pl,4-N-acetylgalacto-saminyltransferase involved in the synthesis of Sda antigen and of a2,6-sialyltransferase activity towards N-acetyl-lactosamine. Biochem J 1990; 270: 519–524.

    PubMed  Google Scholar 

  103. Dall’Olio F, Malagolini N, Serafini-Cessi F. The expression of soluble and cell-bound alpha 2,6 sialyltransferase in human colonic carcinoma CaCo-2 cells correlates with the degree of enterocytic differentiation. Biochem Biophys Res Comm 1992; 184: 1405–1410.

    Article  PubMed  Google Scholar 

  104. Dall’Olio F, Malagolini N, Guerrini S et al. Differentiation-dependent expression of human p-galactoside a2,6-sialyltransferase mRNA in colon carcinoma CaCo-2 cells. Glycoconj J 1996; 13: 115–121.

    Article  PubMed  Google Scholar 

  105. Dall’Olio F, Malagolini N, Stefano G et al. a2,6 Sialylation of N-acetyllactosaminic sequences in human colorectal cancer cell lines relationship with non-adherant growth. Int J Cancer 1991; 47: 291–297.

    Article  PubMed  Google Scholar 

  106. Morgenthaler J, Kemner W, Brossmer R. Sialic acid dependent cell adhesion to collagen IV correlates with in vivo tumorigenicity of the human colon carcinoma sublines HCT116, HCTll6a and HCTll6b. Biochem Biophys Res Commun 1990; 171: 860–866.

    Article  PubMed  CAS  Google Scholar 

  107. La Ferté S, Loh L. Characterization of a family of structurally related glycoproteins expressing pi-6 branched asparagine-linked oligosaccharides in human colon carcinoma cells. Biochem J 1992; 283: 193–201.

    Google Scholar 

  108. Lampe B, Stallmach A, Riecken EO. Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix. Gut 1993; 34: 829–836.

    Article  Google Scholar 

  109. Takada A, Ohmori K, Takahashi N et al. Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl-Lewis a. Biochem Biophys Res Comm 1991; 179: 713–719.

    Article  PubMed  CAS  Google Scholar 

  110. Majuri M-L, Mattila P, Renkonen R. Recombinant E-selectin-protein mediates tumor cell adhesion via sialyl-Lea and sialyl- Lex. Biochem Biophys Res Comm 1992; 182: 1376–1382.

    Article  PubMed  CAS  Google Scholar 

  111. Sawada R, Lowe JB, Fukuda M. E-selectin-dependent adhesion efficiency of colonic carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-1 expression levels. J Biol Chem 1993; 268: 12675–12681.

    PubMed  CAS  Google Scholar 

  112. Sawada R, Tsuboi S, Fukuda M. Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1994; 269: 1425–1431.

    Google Scholar 

  113. Sawada T, Ho JJL, Chung Y-S et al. E- selectin binding by pancreatic tumor cells is inhibited by cancer sera. Int J Cancer 1994; 57: 901–907.

    Article  Google Scholar 

  114. Holmes EH, Levery SB. Biosynthesis of fucose containing lactoseries glycolipids in human colonic adenocarcinoma COLO 205 cells. Arch Biochem Biophys 1989; 274: 633–647.

    Article  PubMed  CAS  Google Scholar 

  115. Ogata S, Chen A, Itzkowitz S. Use of model cell lines to study the biosynthesis and biological role of cancer-associated sialosyl-Tn antigen. Cancer Res 1994; 54: 4036–4044.

    CAS  Google Scholar 

  116. Bresalier RS, Byrd JC, Itzkowitz SH et al. Liver metastasis and adhesion to the sinusoidal endothelium by human colon cancer cells is related to mucin carbohydrate chain length. Proceed AACR 1995; abstract 421.

    Google Scholar 

  117. Brockhausen I, Dickinson N, Ogata S et al. Enzymatic basis for the high Sialyl-Tn expression in a colon cancer cell line. International Symp Glycoconjugates, Seattle. Glycoconj J 1995; 12: 566.

    Article  Google Scholar 

  118. Hanisch FG, Hanski C, Hasegawa A. Sialyl Lewis(x) antigen as defined by monoclonal antibody AM-3 is a marker of dysplasia in the colonic adenoma-carcinoma sequence. Cancer Res 1992; 52: 3138–3144.

    PubMed  CAS  Google Scholar 

  119. Yuan M, Itzkowitz SH, Ferrell LD et al. Expression of Lewisx and sialylated Lewisx antigens in human colorectal polyps. J Natl Cancer Inst 1987; 78: 479–488.

    PubMed  CAS  Google Scholar 

  120. Slomski CA, Durham JP, Watne AL. Glycosyltransferase levels in familial polyposis coli. J Surgical Res 1986; 40: 406–410.

    Article  CAS  Google Scholar 

  121. Paraskeva C, Hague A, Rooney N et al. A single human colonic adenoma cell line can be converted in vitro to both a colorectal adenocarcinoma and a mucinous carcinoma. Int J Cancer 1992; 51: 661–664.

    Article  PubMed  CAS  Google Scholar 

  122. Labarriere N, Piau JP, Otry C et al. H blood group antigen carried by CD44V modulates tumorigenicity of rat colon carcinoma cells. Cancer Res 1994; 54: 6275–6281.

    PubMed  CAS  Google Scholar 

  123. Blottiere HM, Burg C, Zennadi R et al. Involvement of histo-blood-group antigens in the susceptibility of colon carcinoma cells to natural killer-mediated cytotoxicity. Int J Cancer 1992; 52: 609–618.

    Article  PubMed  CAS  Google Scholar 

  124. Lotan R, Raz A. Endogenous lectins as mediators of tumor cell adhesion. J Cell Biochem 1988; 37: 107–117.

    Article  PubMed  CAS  Google Scholar 

  125. Schoeppner HL, Raz A, Ho SB et al. Expression of an endogenous galactose-bind-ing lectin correlates with neoplastic progression in the colon. Cancer 1995; 75: 2818–2826.

    Article  PubMed  CAS  Google Scholar 

  126. Ohannesian DW, Lotan D, Lotan R. Concomitant increases in galectin-1 and its glycoconj ugate ligands (carcinoembryonic antigen, lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate. Cancer Res 1994; 54: 5992–6000.

    PubMed  CAS  Google Scholar 

  127. Mannori G, Crottet P, Cecconi O et al. Differential colon cancer cell adhesion to E-, P-, and L-selectin:role of mucin-type glycoproteins. Cancer Res 1995; 55: 4425–4431.

    PubMed  CAS  Google Scholar 

  128. Kuan S, Byrd J, Basbaum C. Inhibition of mucin glycosylation by Aryl-N-acetyl-a-galactosaminides in human colon cancer cells. J Biol Chem 1989; 264: 19271–19277.

    PubMed  CAS  Google Scholar 

  129. Kojima N, Handa K, Newman W et al. Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem Biophys Res Comm 1992; 182: 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  130. David L, Nesland JM, Clausen H et al. Simple mucin-type carbohydrate antigens (Tn, Sialosyl-Tn and T) in gastric mucosa, carcinomas and metastases. APMIS 1992 Suppl 27; 100: 162–172.

    Google Scholar 

  131. Masuzawa Y, Miyauchi T, Hamanoue M et al. A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells. J Biochem 1992; 112: 609–615.

    PubMed  CAS  Google Scholar 

  132. Carneiro F, Santos L, David L et al. T (Thomsen-Friedenreich) antigen and other simple mucin-type carbohydrate antigens in precursor lesions of gastric carcinoma. Histopathology 1994; 24: 105–113.

    Article  PubMed  CAS  Google Scholar 

  133. Werther JL, Rivera-MacMurray S, Bruckner H et al. Mucin-associated sialosyl-Tn antigen expression in gastric cancer correlates with an adverse outcome. Br J Cancer 1994; 69: 613–616.

    Article  PubMed  CAS  Google Scholar 

  134. Maeda K, Chung Y-S, Onoda N et al. Serum sialyl-Tn antigen level as a prognostic indicator in patients with gastric cancer. Int J Oncol 1994; 4: 129–132.

    PubMed  CAS  Google Scholar 

  135. Kakeji Y, Maehara Y, Morita M et al. Correlation between sialyl Tn antigen and lymphatic metastasis in patients with Borrmann type IV gastric carcinoma. Brit J Cancer 1995; 71: 191–195.

    Article  PubMed  CAS  Google Scholar 

  136. Kushima R, Jancic S, Hattori T. Association between expression of sialosyl-Tn antigen and intestinalization of gastric carcinomas. Int J Cancer 1993; 55: 904–908.

    Article  PubMed  CAS  Google Scholar 

  137. Mullen PJ, Carr N, Milton JD et al. Immu-nohistochemical detection of O-acetylated sialomucins in intestinal metaplasia and carcinoma of the stomach. Histopath 1995; 27: 161–167.

    Article  CAS  Google Scholar 

  138. Yamashita Y, Chung YS, Horie R et al. Alterations in gastric mucin with malignant transformation:novel pathway for mucin synthesis. J Natl Cancer Inst 1995; 87: 441–446.

    Article  PubMed  CAS  Google Scholar 

  139. Kannagi R, Levine P, Watanabe K et al. Recent studies of glycolipid and glycoprotein profiles and characterization of the major glycolipid antigen in gastric cancer of a patient of blood group genotype pp (Tja) first studied in 1951. Cancer Res 1982; 42: 5249–5254.

    PubMed  CAS  Google Scholar 

  140. Levine P. Blood group and tissue genetic markers in familial adenocarcinoma:potential specific immunotherapy. Semin Oncol 1978; 5: 25.

    PubMed  CAS  Google Scholar 

  141. Sakamoto J, Watanabe T, Tokumaru T et al. Expression of Lewisa’ Lewisb, Lewisx, Lewisy, Sialyl-Lewisa, and Sialyl-Lewisx blood group antigens in human gastric carcinoma and in normal gastric tissue. Cancer Res 1989; 49: 745–752.

    PubMed  CAS  Google Scholar 

  142. Ho SB, Shekels LL, Toribara et al. Mucin gene expression in normal, preneoplastic, and neoplastic human gastric epithelium. Cancer Res 1995; 55: 2681–2690.

    PubMed  CAS  Google Scholar 

  143. Bara J, Imberty A, Perez S et al. A fucose residue can mask the MUC-1 epitopes in normal and cancerous gastric mucosae. Int J Cancer 1993; 54: 607–613.

    Article  PubMed  CAS  Google Scholar 

  144. David L, Leitao D, Sobrinho-Simoes M et al. Biosynthetic basis of incompatible histo-blood group A antigen expression: Anti-A transferase antibodies reactive with gastric cancer tissue of type O individuals. Cancer Res 1993; 53: 5494–5500.

    PubMed  CAS  Google Scholar 

  145. Ohe Y, Hinoda Y, Irimura T et al. Expression of sulfated carbohydrate chains detected by monoclonal antibody 91–9H in human gastric cancer tissues. Jpn J Cancer Res 1994; 85: 400–408.

    Article  PubMed  CAS  Google Scholar 

  146. Mitsuyama T, Gasa S, Taniguchi N et al. Elevation of sulfatide synthesis in human gastric adenocarcinoma:biochemical characteristics common to adenocarcinomas. J Exp Clin Cancer Res 1983; 2: 25–30.

    Google Scholar 

  147. Tatsuta M, Iishi H, Okuda S et al. Association of Helicobacter pylori with differenti-ated-type early gastric cancer. Cancer 1993; 72: 1841–1845.

    Article  PubMed  CAS  Google Scholar 

  148. Oda T, Kanai Y, Oyama T et al. E-cadherin gene mutations in human gastric carcinoma cell lines. Proc Natl Acad Sei USA 1994; 91: 1858–1862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Intestinal Cancer. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics