Skip to main content

Glycosylation in Cancer and Oncogenic Transformation

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Oncogenic transformation in many tissues is associated with altered glycosylation or the appearance of oncofetal glycoforms (Table 6).1,2 The development of colon cancer occurs in several steps including accumulating activation of oncogenes and inactivation of suppressor genes.3 Glycosylation changes arising during carcinogenesis most likely originate as a consequence of malignant transformation and changing growth and differentiation of the cancer cell. However, these glycosylation changes are critical for the biology of the cancer cell and influence their immunogenicity, cell adhesion and other properties. A mutated gene found in colon cancer appears to code for a member of the adhesion molecule family; this supports the idea that extracellular interactions are important in the control of cell growth.4 The regulation of glycosyltransferase gene expression may be linked to the activation of oncogenes. A major challenge is to understand the control of glycosylation during malignant transformation. As discussed in chapter 8, many factors contribute to the biosynthesis of glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Vouge M, Mukherjee B. Transformation of normal rat kidney cells by v-K-ras enhances expression of transin 2 and an S100 related calcium-binding protein. Oncogene 1992; 7: 109–119.

    PubMed  Google Scholar 

  2. Mas E, Abouakil N, Roudani S et al. Human fetoacinar pancreatic protein:an oncofetal glycoform of the normally secreted pancreatic bile-salt-dependent lipase. Biochem J 1993; 289: 609–615.

    PubMed  CAS  Google Scholar 

  3. Vogelstein B, Fearon ER, Hamilton SR et al. Genetic alterations during colorectal tumor development. New Eng J Med 1988; 319: 525–532.

    Article  PubMed  CAS  Google Scholar 

  4. Fearon ER, Cho KR, Nigro JM et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247: 49–54.

    Article  PubMed  CAS  Google Scholar 

  5. Miyoshi E, Nishikawa A, Ihara Y et al. Transforming growth factor ß up-regulates expression of the Nacetylglucosaminyltransferase V gene in mouse melanoma cells. J Biol Chem 1995; 270: 6216–6220.

    Article  PubMed  CAS  Google Scholar 

  6. Cho SK, Yeh J, Cho M et al. Transcriptional regulation of a1,3-galactosyltransferase in enbryonal carcinoma cells by retinoic acid. J Biol Chem 1996; 271: 3238–3246.

    Article  PubMed  CAS  Google Scholar 

  7. Le Marer N, Stéhelin D. High alpha-2, 6sialylation of N-acetyllactosamine sequences in ras-transformed rat fibroblasts correlates with high invasive potential. Glycobiology 1995; 5: 219–226.

    Article  PubMed  Google Scholar 

  8. Dall’Olio F, Malagolini N, Guerrini S et al. Differentiation-dependent expression of human ß-galactoside a2,6-sialyltransferase mRNA in colon carcinoma CaCo-2 cells. Glycoconj J 1996; 13: 115–121.

    Article  PubMed  Google Scholar 

  9. Holland JF, Frei E, Bast RC Jr et al. In:Lea and Febiger eds. Cancer Medicine 3rd Ed Vol 1. Philadelphia PA: 1993: 132–134.

    Google Scholar 

  10. Holland JF, Frei E, Bast RC Jr et al. In:Lea and Febiger eds. Cancer Medicine 3rd Ed Vol 1. Philadelphia PA: 1993: 324.

    Google Scholar 

  11. Aub JC, Sanford BH, Cote MN. Studies on reactivity of tumor and normal cells to a wheat germ agglutinin. Proc Natl Acad Sci USA 1965; 54: 396–399.

    Article  PubMed  CAS  Google Scholar 

  12. Burger MM. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci USA 1969; 62: 994–1001.

    Article  PubMed  CAS  Google Scholar 

  13. Xu XC, el-Naggar AK, Loran R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol 1995; 147: 815–822.

    PubMed  CAS  Google Scholar 

  14. Chiariotti L, Berlingieri MT, Battaglia C et al. Expression of galectin-1 in normal human thyroid gland and in differentiated and poorly differentiated thyroid tumors. Internat J Cancer 1995; 64: 171–175.

    Article  CAS  Google Scholar 

  15. Schoeppner HL, Raz A, Ho SB et al. Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer 1995; 75: 2818–2826.

    Article  PubMed  CAS  Google Scholar 

  16. Loran R, Belloni PN, Tressler RJ et al. Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J 1994; 11: 462–468.

    Article  Google Scholar 

  17. Ohannesian DW, Lotan D, Lotan R. Concomitant increases in galectin-1 and its glycoconjugate ligands (carcinoembryonic antigen, lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate. Cancer Res 1994; 54: 5992–6000.

    PubMed  CAS  Google Scholar 

  18. Liotta LA, Rao CN, Barsky SH. Tumor invasion and the extracellular matrix. Lab Invest 1983; 49: 636–649.

    PubMed  CAS  Google Scholar 

  19. Baker SR, Blithe DL, Buck CA et al. Glycosaminoglycans and other carbohydrate groups bound to proteins of control and transformed cells. J Biol Chem 1980; 255: 8719–8728.

    PubMed  CAS  Google Scholar 

  20. Warren L, Buck CA, Tuszynski GP. Glycopeptide changes and malignant transformation:a possible role for carbohydrate in malignant behavior. Biochim Biophys Acta 1978; 516: 97–127.

    PubMed  CAS  Google Scholar 

  21. Warren L, Buck CA. The membrane glycoproteins of the malignant cell. Clin Biochem 1980; 13: 191–197.

    Article  PubMed  CAS  Google Scholar 

  22. Hakomori S. Structures and organization of cell surface glycolipids dependency on cell growth and malignant transformation. Biochim Biophys Acta 1975; 417: 55–89.

    PubMed  CAS  Google Scholar 

  23. Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 1985; 45: 2405–2414.

    PubMed  CAS  Google Scholar 

  24. Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52: 257–331.

    Article  PubMed  CAS  Google Scholar 

  25. Hakomori S, Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst 1983; 71: 231–251.

    PubMed  CAS  Google Scholar 

  26. Miyaki M, Zenita K, Tanaka O et al. Stage-specific expression of SSEA-1-related antigens in the developing lung of human embryos and its relation to the distribution of these antigens in lung cancers. Cancer Res 1988; 48: 7150–7158.

    Google Scholar 

  27. Fukui S, Numata Y, Kurosaka A et al. Production of monoclonal antibodies directed against carbohydrate moieties of cell surface glycoproteins. Jpn J Cancer Res 1988; 79: 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  28. Hounsell EF, Lawson AM, Feizi T. Structure and antigenic diversity in mucin carbohydrate chains. In:Chantler EN, Elder JB, Elstein M eds. Mucus in Health and Disease-II. New York: Plenum Press, 1982: 39–43.

    Google Scholar 

  29. Hounsell EF, Lawson AM, Feeney J et al. Structural analysis of the 0-glycosidically linked core-region oligosaccharides of hu-man meconium glycoproteins which express oncofoetal antigens. Eur J Biochem 1985; 148: 367–377.

    Article  PubMed  CAS  Google Scholar 

  30. Hounsell E. Glycoprotein Analysis in Biomedicine. Humana Press, Totowa, NJ. 1993; 1–17.

    Book  Google Scholar 

  31. Buck C. A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 1970; 9: 4567–4576.

    Article  PubMed  CAS  Google Scholar 

  32. Buck C, Glick M, Warren L. Glycopeptides from the surface of control and virus-transformed cells. Science 1971; 172: 169–171.

    Article  PubMed  CAS  Google Scholar 

  33. Kobata A. Structural changes induced in the sugar chains of glycoproteins by malignant transformation of producing cells and their clinical application. Biochimie 1988; 266: 1575–1585.

    Article  Google Scholar 

  34. Hull S, Laine R, Kaizu T et al. Structures of the 0-linked oligosaccharides of the major cell surface sialoglycoprotein of MAT-B1 and MAT-C1 ascites sublines of the 13762 rat mammary adenocarcinoma. J Biol Chem 1984; 259: 4866–4877.

    PubMed  CAS  Google Scholar 

  35. Hull SR, Bright A, Carraway KL et al. Oligosaccharide differences in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line. Cancer Commun 1989; 1: 261–267.

    PubMed  CAS  Google Scholar 

  36. Feizi T, Kapadia A, Gooi HC et al. Human monoclonal auto-antibodies detect changes in expression and polarization of the Ii antigens during cell differentiation in early mouse embryos and teratocarcinomas. In:Muramatsu T, Gachelin G, Moscona AA, Ikawa Y, eds. Teratocarcinoma and Embryonic Cell Interactions. NY: Acad Press 1982: 201–215.

    Google Scholar 

  37. Feizi T. Antigenicity of mucins-their relevance to tumour associated and stage specific embryonic antigens. In:Chantler EN, Elder JB, Elstein M eds. Mucus in Health and Disease-II. New York: Plenum Press 1982: 29–39.

    Google Scholar 

  38. Springer GF. Blood group T and Tn antigens are universal, clonal, epithelial, cell-adhesive, autoimmunogenic carcinoma markers. Progress in Clin & Biol Res 1983; 133: 157–166.

    CAS  Google Scholar 

  39. Springer G. T and Tn, general carcinoma antigens. Science 1984; 224: 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  40. Santer U, DeSantis R, Hard K et al. N-linked oligosaccharide changes with oncogenic transformation require sialylation and multi-antennae. Eur J Biochem 1989; 181: 249–260.

    Article  PubMed  CAS  Google Scholar 

  41. Vandamme V, Cazlaris H, Le Marer N et at Comparison of sialyl-and al-3 galactosyltransferase activity in NIH 3T3 cells transformed with ras oncogen:increased ß-galactoside a2–6 sialyltransferase. Biochimie 1992; 74: 89–100.

    CAS  Google Scholar 

  42. Delannoy P, Pelczar H, Vandamme V et al. Sialyltransferase activity in FR3T3 cells transformed with ras oncogen:decreased CMP-Neu5Ac:Gal13l-3GaINAc a-2,3-sialyltransferase. Glycoconj J 1993; 10: 91–98.

    Article  PubMed  CAS  Google Scholar 

  43. Yamashita K, Ohkura T, Tachibana Y et al. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259: 10834–10840.

    PubMed  CAS  Google Scholar 

  44. Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine linked tri-and tetra-antennary glycopeptides containing GIcNAc-13(1–6)Man-a(1–6)Man-and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261: 10772–10777.

    PubMed  CAS  Google Scholar 

  45. Yamashita K, Tachibana Y, Ohkura T et al. Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 1985; 260: 3963–3969.

    PubMed  CAS  Google Scholar 

  46. Yousefi S, Higgins E, Daoling Z et al. Increased UDP-G1cNAc:Galß1–3Ga1NAcR(G1cNAc to Ga1NAc) ßl-6 N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosaminoglycan synthesis. J Biol Chem 1991; 266: 1772–1782.

    PubMed  CAS  Google Scholar 

  47. Fernandes B, Sagman U, Auger M et al. 1316 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 1991; 51: 718–723.

    PubMed  CAS  Google Scholar 

  48. Xerri L, Payan M-J, Choux R et al. Predominance of sialomucin secretion in malignant and premalignant pancreatic lesions. Hum Pathol 1990; 21: 927–931.

    Article  PubMed  CAS  Google Scholar 

  49. Lan MS, Batra SK, Qi W-N et al. Cloning and sequencing of a human pancreatic tu-mor mucin cDNA. J Biol Chem 1990; 265: 15294–15299.

    PubMed  CAS  Google Scholar 

  50. Roussel P, Lamblin G. Human mucosal mucins in diseases. 1996, In: Glycoproteins and Disease. Montreiul J, Vliegenthart JFG, Schaditer H eds. Elsevier, Amsterdam 1996; 351–393.

    Chapter  Google Scholar 

  51. Granovsky M, Bielfeldt T, Peters S, et al. 0-glycan core 1 UDP-Gal:GalNAc 33galactosyltransferase is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur J Biochem 1994; 221: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  52. Brockhausen I, Möller G, Merz G et al. Control of glycoprotein synthesis:The peptide portion of synthetic 0-glycopeptide substrates influences the activity of 0-glycan core 1 Uridine 5’-diphospho-galactose: Nacetylgalactosaminea-R ß3-galactosyl-transferase. Biochemistry 1990; 29: 10206–10212.

    Article  PubMed  CAS  Google Scholar 

  53. Taylor-Papadimitriou J, D’Souza B, Burchell J et al. The role of tumor-associated antigens in the biology and immunotherapy of breast cancer. Ann NY Acad Sci 1993; 698: 31–47.

    Article  PubMed  CAS  Google Scholar 

  54. Kotera Y, Fontenot J, Pecher G et al. Humoral immunity against a tandem repeat epitope of human mucin MUC1 in sera from breast, pancreatic and colon cancer patients. Cancer Res 1994; 54: 2856–2860.

    PubMed  CAS  Google Scholar 

  55. Denton G, Sekowski M, Price MR. Induction of antibody responses to breast carcinoma associated mucins using synthetic peptide constructs as immunogens. Cancer Lett 1993; 70: 143–150.

    Article  PubMed  CAS  Google Scholar 

  56. Ding L, Lalani EN, Reddish M et al. Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene:effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene. Cancer Immunol Immunother 1993; 36: 9–17.

    Article  PubMed  CAS  Google Scholar 

  57. McKenzie IFC and Xing PX. Mucins in breast cancer:recent immunological advances. Cancer Cells 1990; 2: 75–78.

    PubMed  CAS  Google Scholar 

  58. Gendler SJ, Spicer AP, Lalani EN et al. Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis 1991; 144: S42 - S47.

    Article  PubMed  CAS  Google Scholar 

  59. Niv Y, Schwartz B, Amsalem Y et al. Human HT-29 colon carcinoma cells:mucin production and tumorigenicity in relation to growth phases. Anticancer Res 1995; 15: 2023–2028.

    PubMed  CAS  Google Scholar 

  60. Winterbourne D, Kahn Z. Heparan sulfate alterations in tumor cells. Biochem Soc Trans 1984; 12: 540–542.

    PubMed  CAS  Google Scholar 

  61. Iozzo R. Proteoglycans:structure, function, and role in neoplasia. Lab Invest 1985; 53: 373–396.

    PubMed  CAS  Google Scholar 

  62. Yamori T, Kimura H, Stewart K et al. Differential production of high molecular weight sulfated glycoproteins in normal colonic mucosa, primary colon carcinoma, and metastases. Cancer Res 1987; 47: 2741–2747.

    PubMed  CAS  Google Scholar 

  63. Shamsuddin A, Trump B. Colon Epithelium III. In vitro studies of colon carcinogenesis in Fischer 344 rats. N-methyl-Nnitro-N-nitrosoguanidine-induced changes in colon epithelium in explant culture. J Natl Cancer Inst 1981; 66: 403–411.

    Google Scholar 

  64. Irimura T, Wynn D, Hager L et al. Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res 1991; 51: 5728–5735.

    PubMed  CAS  Google Scholar 

  65. Filipe M, Potet F, Bogomoletz W et al. Incomplete sulfomucin-secreting intestinal metaplasia for gastric cancer. Preliminary data from a prospective study from three centres. Gut 1985; 26: 1319–1326.

    Article  PubMed  CAS  Google Scholar 

  66. Padhy L, Shih C, Cowing D et al. Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas. Cell 1982; 28: 865–871.

    Article  PubMed  CAS  Google Scholar 

  67. Coussens L, Yang-Feng T, Liao Y et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985; 230: 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  68. Moriarty J, Skelly CM, Bharathan S et al. Sialomucin and lytic susceptibility of rat mammary tumor ascites cells. Cancer Res 1990; 50: 6800–6805.

    PubMed  CAS  Google Scholar 

  69. Wu K, Salas P, Yee L et al. Tissue and tumor expression of a cell surface glycoprotein complex containing an integral membrane glycoprotein activator of p185“e° Oncogene 1994; 9: 3139–3147.

    CAS  Google Scholar 

  70. Carraway K, Wu K, Yee L et al. Tissue and tumor expression of a cell surface glycopro- tein complex containing an integral membrane glycoprotein activator of p185°“ phosphorylation. Proc Amer Assoc Cancer Res 1995; 36: 560.

    Google Scholar 

  71. Pierce-Cretel A, Pamblanco M, Strecker G et al. Heterogeneity of the glycans O-glycosidically linked to the hinge region of secretory immunoglobulins from human milk. Eur J Biochem 1981; 114: 169–178.

    Article  PubMed  CAS  Google Scholar 

  72. Nakasaki H, Mitomi T, Noto T et al. Mosaicism in the expression of tumor-associated carbohydrate antigens in human colonic and gastric cancers. Cancer Res 1989; 49: 3662–3669.

    PubMed  CAS  Google Scholar 

  73. Therkildsen MH, Mandel U, Christensen M et al. Simple Mucin-type Tn and SialosylTn carbohydrate antigens in salivary gland carcinomas. Cancer 1993; 72: 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  74. Itzkowitz S, Yuan M, Montgomery C et al. Expression of Tn. sialosyl-Tn and T antigens in human colon cancer. Cancer Res 1989; 49: 197–204.

    PubMed  CAS  Google Scholar 

  75. Inoue H. Clinical value of sialyl Tn antigen in patients with gynecologic tumors. Obstet Gynecol 1990; 75: 1032–1036.

    PubMed  CAS  Google Scholar 

  76. Takahashi I, Maehara I, Kusumoto T et al. Predictive value of preoperative serum sialyl Tn antigen levels in prognosis of patients with gastric cancer. Cancer 1993; 72: 1836–1840.

    Article  PubMed  CAS  Google Scholar 

  77. Singhal A, Fohn M, Hakomori S. Induction of a-N-acetylgalactosamine-O-serine/threonine Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res 1991; 51: 1406–1411.

    PubMed  CAS  Google Scholar 

  78. Ogata S, Chen A, Itzkowitz S. Use of model cell lines to study the biosynthesis and biological role of cancer-associated sialosyl-Tn antigen. Cancer Res 1994; 54: 4036–4044.

    CAS  Google Scholar 

  79. Springer G, Desai P, Wise W et al. Pancarcinoma T and Tn epitopes: autoimmunogens and diagnostic markers that reveal incipient carcimomas and help establish prognosis. In:Herberman R, Mercer D eds. Immunodiagnosis of Cancer 2nd ed. New York: Marcel Dekker, 1990: 587–612.

    Google Scholar 

  80. Springer G, Desai P, Tegtmeyer H et al. T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced human breast carcinoma. Cancer Biotherapy 1994; 9: 7–15.

    Article  PubMed  CAS  Google Scholar 

  81. Warren L, Fuhrer JP, Buck CA. Surface glycoproteins of normal and transformed cells:a difference determined by sialic acid and a growth-dependent sialyl transferase. Proc Natl Acad Sci USA 1972; 69: 1838–1842.

    Article  PubMed  CAS  Google Scholar 

  82. Warren L. The malignant cell and its membranes. Am J Pathol 1974; 77: 69–76.

    PubMed  CAS  Google Scholar 

  83. Ip C, Dao TL. Increase in serum and tissue glycosyltransferases and glycosidases in tumor-bearing rats. Cancer Res 1977; 37: 3442–3447.

    PubMed  CAS  Google Scholar 

  84. Kessel D, Allen J. Elevated plasma sialyltransferase in the cancer patient. Cancer Res 1975; 35: 670–672.

    PubMed  CAS  Google Scholar 

  85. Kessel D, Sykes E, Henderson M. Glycosyltransferase levels in tumors metastatic to liver and in uninvolved liver tissue. J Natl Cancer Inst 1977; 59: 29–32.

    PubMed  CAS  Google Scholar 

  86. Silver HKB, Karim KA, Archibald EL et al. Serum sialic acid and sialyltransferase as monitors of tumor burden in malignant melanoma patients. Cancer Res 1979; 39: 5036–5042.

    PubMed  CAS  Google Scholar 

  87. Holzhauser R, Faillard H. Sialic acids in human lymphocytes. Qualitative and quantitative alterations in cancer cases. Carbohydr Res 1988; 183: 89–95.

    Article  PubMed  CAS  Google Scholar 

  88. Ikuta K, Nishi Y, Simizu Y et al. Hanganutziu-Deicher type heterophile antigen-positive cells in human cancer tissue demonstrated by membrane immunofluorescence. Biken J 1982; 25: 47–50.

    PubMed  CAS  Google Scholar 

  89. Ohashi Y, Sasabe T, Nishida T et al. Hanganutziu-Deicher heterophile antigen in human retinoblastoma cells. Am J Ophthalmol 1983; 96: 321–325.

    PubMed  CAS  Google Scholar 

  90. Kawai T, Kato A, Higashi H et al. Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res 1991; 51: 1242–1246.

    PubMed  CAS  Google Scholar 

  91. Devine P, Clark B, Birrell G et al. The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an 0-linked.mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res 1991; 51: 5826–5836.

    PubMed  CAS  Google Scholar 

  92. Fukuda MN, Dell A, Oates JE et al. Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl a2–9 sialyl) terminal isolated from PAl human embryonal carcinoma cells. J Biol Chem 1985; 260: 6623–6631.

    PubMed  CAS  Google Scholar 

  93. Bastida E, Almirall L, Jamieson GA et al. Cell surface sialylation of two human tumor cell lines and its correlation with their platelet-activating activity. Cancer Res 1987; 47: 1767–1770.

    PubMed  CAS  Google Scholar 

  94. Scialla SJ, Speckart SF, Hant MJ et al. Alterations in platelet surface sialyltransferase activity and platelet aggregation in a group of cancer patients with high incidence of thrombosis. Cancer Res 1979; 39: 2031 2035.

    Google Scholar 

  95. Altevogt P, Fogel M, Cheingsong-Popov R et al. Different patterns of lectin binding and cell surface sialylation detected on related high-and low-metastatic tumor lines. Cancer Res 1983; 43: 5138–5144.

    PubMed  CAS  Google Scholar 

  96. Shigeta S, Winter H, Goldstein I. a(2–3) and a(2–6) sialyltransferase activities present in three variants of Ehrlich tumor cells: identification of the products derived from N-acetyllactosamine and ß-D-Gal(1–3)-a-DGa1NAc(1–0)-Bn. Carbohydr Res 1994; 264: 111–121.

    Article  PubMed  CAS  Google Scholar 

  97. Dall’Olio F, Malagolini N, Di Stefano G et al. Increased CMP-NeuAc:Ga1131–4G1cNAcR a2–6 sialyltransferase activity in human colorectal cancer tissues. Int J Cancer 1989; 44: 434–439.

    Article  PubMed  Google Scholar 

  98. Kemmner W, Krück D, Schlag P. Different sialyltransferase activities in human colorectal carcinoma cells from surgical specimens detected by specific glycoprotein and glycolipid acceptors. Clin Exp Metastasis 1994; 12: 245–254.

    Article  PubMed  CAS  Google Scholar 

  99. Yang J, Byrd JC, Siddiki B et al. Alterations of 0-glycan biosynthesis in human colon-cancer tissues, Glycobiology 1994; 4: 873–884.

    Article  PubMed  CAS  Google Scholar 

  100. Brockhausen I, Yang J-M, Burchell J et al. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 1995; 233: 607–617.

    Article  PubMed  CAS  Google Scholar 

  101. Baker M, Kanani A, Brockhausen I et al. Presence of cytidine 5’ monophospho-Nacetylneuraminic acid:Ga113l-3Ga1NAc-R a(2–3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. Cancer Res 1987; 47: 2763–2766

    PubMed  CAS  Google Scholar 

  102. Yonezawa S, Tachikawa T, Shin S et al. Sialosyl-Tn antigen:its distribution in normal human tissues and expression in adenocarcinomas. Am J Clin Pathol 1992; 98: 167–174.

    PubMed  CAS  Google Scholar 

  103. Kökoglu E, Sönmez H, Uslu E et al. Sialic acid levels in various types of cancer. Cancer Biochem Biophys 1992; 13: 57–64.

    PubMed  Google Scholar 

  104. Lagana A, Martinez BP, Marino A et al. Correlation of serum sialic acid fractions as markers for carcinoma of the uterine cervix. Anticancer Res 1995; 15: 2341–2346.

    PubMed  CAS  Google Scholar 

  105. Grogan T, Guptil J, Mullin J et al. Polysialylated NCAM as a neurodeterminant in malignant lymphoma (ML). Lab Invest 1994; 70: 110A.

    Google Scholar 

  106. Scott AA, Kopecky KJ, Grogan TM et al. CD56:a determinant of extramedullary and central nervous system (CNS) involvement in acute myeloid leukemia. Lab Invest 1994; 70: 120A.

    Google Scholar 

  107. Hoff S, Matsushita Y, Qta D et al. Increased expression of sialyl-dimeric Le antigen in liver metastases of human colorectal carcinoma. Cancer Res 1989; 49: 6883–6888.

    PubMed  CAS  Google Scholar 

  108. Shirahama T, Ikoma M, Muramatsu H et al. Reactivity to fucose-binding proteins of lotus tetragonolobus correlates with metastatic phenotype of transitional cell carcinoma of the bladder. J Urol 1992; 147: 1659–1664.

    PubMed  CAS  Google Scholar 

  109. Dargan E, Thompson S, Cantwell BMJ. Changes in the fucose content of haptoglobin in breast and ovarian cancer:association with disease progression. Glycosyl Dis 1994; 1: 37–43.

    Google Scholar 

  110. Ravn V, Mandel U, Svenstrup B et al. Expression of type-2 histo-blood group carbohydrate antigens (Lex, Leg, and H) in normal and malignant human endometrium. Virchows Archiv 1994; 424: 411–419.

    PubMed  CAS  Google Scholar 

  111. Kelly RJ, Ernst LK, Larsen RD et al. Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. Proc Natl Acad Sci USA 1994; 91: 5843–5847.

    Article  PubMed  CAS  Google Scholar 

  112. Hitoshi S, Kusunoki S, Kanazawa I et al. Molecular cloning and expression of two types of rabbit (3-galactoside cd,2-fucosyltransferase. J Biol Chem 1995; 270: 8844–8850.

    Article  PubMed  CAS  Google Scholar 

  113. Yazawa S, Nakamura J, Asap T et al. Aberrant al-2 fucosyltransferases found in hu-man colorectal carcinoma involved in the accumulation of Leh and Y antigens in colorectal tumors. Jpn J Cancer Res 1993; 84: 989–995.

    Article  PubMed  CAS  Google Scholar 

  114. Kuhns WJ, Schoentag R. Carcinoma-related alterations of glycosyltransferases in human tissues. Cancer Res 1981; 41: 2767–2772.

    PubMed  CAS  Google Scholar 

  115. Asao T, Yazawa S, Nagamachi Y et al. Serum alpha (1–3)-L-fucosyltransferase, carcinoembryonic antigen, and sialyl Lewis X-i antigen levels in lung cancer. Cancer 1989; 64: 2541–2545.

    Article  PubMed  CAS  Google Scholar 

  116. Yazawa S, Madiyalakan R, Izawa H et al. Cancer-associated elevation of a(1–3)-Lfucosyltransferase activity in human serum. Cancer 1988; 62: 516–520.

    Article  PubMed  CAS  Google Scholar 

  117. Sueyoshi S, Tsuboi S, Sawada-Hirai R et al. Expression of distinct fucosylated oligosaccharides and carbohydrate-mediated adhesion efficiency directed by two different a1,3-fucosyltransferases. J Biol Chem 1994; 269: 32342–32350.

    PubMed  CAS  Google Scholar 

  118. Majuri M-L, Niemelä R, Tiisala S et al. Expression and function of a2,3-sialyl-and a1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines:role in synthesis of Eselectin counter-receptors. Int J Cancer 1995; 63: 551–559.

    Article  PubMed  CAS  Google Scholar 

  119. Plotkin GM, Wides RJ, Gilbert SL et al. Galactosyl transferase activity in human transitional cell carcinoma lines and in benign and neoplastic human bladder epithelium. Cancer Res 1979; 39: 3856–3860.

    PubMed  CAS  Google Scholar 

  120. Madiyalakan R, Piscorz CF, Piver MS et al. Serum 13-(1–4)-galactosyltransferase activity with synthetic low molecular weight acceptor in human ovarian cancer. Eur J Cancer Clin Oncol 1987; 23: 901–906.

    Article  PubMed  CAS  Google Scholar 

  121. Nozawa S, Yajima M, Sakuma T et al. Cancer-associated galactosyltransferase as a tumor marker for ovarian clear cell carcinoma. Cancer Res 1990; 50: 754–759.

    PubMed  CAS  Google Scholar 

  122. Humphries-Beyer MG, Maeda N, Purushotham KR et al. Increased expression of the enzyme 131–4-galactosyltransferase is associated with human parotid neoplasms. Proc Soc Exp Biol Med 1990; 193: 293–300.

    Google Scholar 

  123. Kijimoto-Ochiai S, Makita A, Kameya T et al. Elevation of glycoprotein galactosyltransferase activity in human lung cancer related to histological types. Cancer Res 1981; 41: 2931–2935.

    PubMed  CAS  Google Scholar 

  124. Ip C, Dao T. Alterations in serum glyco-134. syltransferases and 5’-nucleotidase in breast cancer patients. Cancer Res 1978; 38: 723728.

    Google Scholar 

  125. Kirschbaum BB. Glycoprotein metabolism in human renal disease:serum glycoproteins and glycoprotein:glycosyl transferase levels in chronic renal failure. J Lab Clin Med 136. 1975; 86: 764–771.

    Google Scholar 

  126. Jenis DM, Basu S, Pollard M. Increased activity of a beta-galactosyltransferase in tissues of rats bearing prostate and mammary adenocarcinomas. Cancer Biochem 137. Biophys 1982; 6: 37–45.

    CAS  Google Scholar 

  127. Podolsky DK, Weiser MM. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Comm 1975; 65: 545–551.

    Article  PubMed  CAS  Google Scholar 

  128. Podolsky DK, Weiser MM. Purification of galactosyltransferase “Isoenzymes” I and II. Comparison of cancer-associated and normal galactosyltransferase activities. J Biol 139. Chem 1979; 254: 3983–3990.

    CAS  Google Scholar 

  129. Boyle FA, Cook ND, Peters TJ. Separation and partial characterization of two galactosyltransferase isoforms from malignant ascitic fluid. Clin Chim Acta 1988; 171: 187–196. 140.

    Google Scholar 

  130. Chatterjee SK, Battacharya M, Barlow JJ. Biochemical and immunologic characterization of galactosyltransferase purified from the ascites of ovarian cancer patients. J Natl Cancer Inst 1985; 75: 237–248.

    PubMed  CAS  Google Scholar 

  131. Podolsky DK, McPhee MS, Alpert E et al. Galactosyltransferase isoenzyme II in the detection of pancreatic cancer:comparison with. radiologic, endoscopic, and serologic tests. New Engl J Med 1981; 304: 1313–1318.

    Article  PubMed  CAS  Google Scholar 

  132. Mourant A, Kopec A, Domaniewska-Sobczak K. Blood Groups and Diseases. Oxford University Press, Oxford, 1978; 13–15.

    Google Scholar 

  133. Hakomori S, Kannagi R. Glyccisphin-. golipids as tumor-associated and differentiation markers. J Natl Cancer Inst 1983; 71: 231–251.

    PubMed  CAS  Google Scholar 

  134. Bremer EG, Levery SB, Sonnino S et al. Characterization of a glycosphingolipd an-tigen defined by the monoclonal antibody MBrl expressed in normal and neoplastic cells of human mammary gland. J Biol Chem 1984; 259: 14773–14777.

    PubMed  CAS  Google Scholar 

  135. Srinivas V, Khan A, Hoisington S et al. Relationship of blood groups and bladder cancer. J Urol 1986; 135: 50–52.

    PubMed  CAS  Google Scholar 

  136. Gooi H, Feizi T, Kapadia A et al. Stage-specific embryonic antigen involves al-3 fucosylated type 2 blood group chains. Nature 1981; 292: 156–158.

    Article  PubMed  CAS  Google Scholar 

  137. Stellner K, Hakomori S. Enzymatic conversion of “H1 -glycolipid” to A or B-glycolipid and deficiency of these enzyme activities in adenocarcinoma. Biochem Biophys Res Comm 1973; 55: 439–445.

    Article  PubMed  CAS  Google Scholar 

  138. Orntoft T, Wolf H, Watkins W. Activity of the human blood group ABO, Se, H, Le, and X gene encoded glycosyltransferases in normal and malignant bladder urothelium. Cancer Res 1988; 48: 4427–4433.

    PubMed  Google Scholar 

  139. Nudelman E, Kannagi R, Hakomori S et al. A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 1983; 220: 509–511.

    Article  PubMed  CAS  Google Scholar 

  140. Magnani J, Nilsson B, Brockhaus M et al. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-Nfucopentaose II. J Biol Chem 1982; 257: 14365–14369.

    PubMed  CAS  Google Scholar 

  141. Hakomori S, Nudelman E, Levery S et al. Novel fucolipids accumulating in human adenocarcinoma. J Biol Chem 1984; 259: 4672–4680.

    PubMed  CAS  Google Scholar 

  142. Hiraiwa N, Tsuyuoka K, Li Y et al. Gangliosides and sialoglycoproteins carrying a rare blood group. Cancer Res 1990; 50: 5497–5503.

    PubMed  CAS  Google Scholar 

  143. Clausen H, Hakomori S, Graem N et al. Incompatible A antigen expressed in tumors of blood group O individuals: immunochemical, immunohistologic, and enzymatic characterization. J Immunol 1986; 136: 326–330.

    PubMed  CAS  Google Scholar 

  144. Metoki R, Kakudo K, Tsuji Y et al. Deletion of histo-blood group A and B antigens and expression of incompatible A antigen in ovarian cancer. J Natl Cancer Inst 1989; 81: 1151–1157.

    Article  PubMed  CAS  Google Scholar 

  145. Yates AD, Feeney J, Donald AR et al. Characterization of a blood-group A-active tetrasaccharide synthesized by a blood-group B gene-specified glycosyltransferase. Carboh Res 1984; 130: 251–260.

    Article  CAS  Google Scholar 

  146. Simmons D, Perlmann P. Carcinoembryonic antigen and blood group substances. Cancer Res 1973; 33: 313–322.

    PubMed  CAS  Google Scholar 

  147. Hakomori S, Andrews H. Sphingoglycolipids with Leb activity, and the co-presence of Lea, Le“ glycolipids in human 150. tumor tissue. Biochim Biophys Acta 1970; 202: 225–228.

    Article  PubMed  CAS  Google Scholar 

  148. Blaszczyk M, Hansson GC, Karlsson K-A et al. Lewis blood group antigens defined 151. by monoclonal anti-colon carcinoma antibodies. Arch Biochem Biophys 1984; 233: 161–168.

    Article  PubMed  CAS  Google Scholar 

  149. Fukushi Y, Hakomori S, Nudelman E et al. 152. Novel fucolipids accumulating in human adenocarcinoma II selective isolation of hybridoma antibodies that differentially recognize mono-, di, and trifucosylated type 2 chain. J Biol Chem 1984; 259: 4681–4685.

    PubMed  CAS  Google Scholar 

  150. Mandel U, Langkilde NC, orntoft TF et al. Expression of histo-blood-group-A/B-genedefined glycosyltransferases in normal and malignant epithelia:Correlation with A/B carbohydrate expression. Int J Cancer 1992; 52: 7–12.

    Article  PubMed  CAS  Google Scholar 

  151. Kim Y, Issacs R, Perdomo JM. Alterations of membrane glycopeptides in human colonic adenocarcinoma. Proc Natl Acad Sci USA 1974; 71: 4869–4873.

    Article  PubMed  CAS  Google Scholar 

  152. Dabelsteen E, Graem N, Clausen H et al. Structural variations of blood group A antigens in human normal colon and carcinomas. Cancer Res 1988; 48: 181–187.

    PubMed  CAS  Google Scholar 

  153. Orntoft TF, Bech E. Circulating blood group related carbohydrate antigens as tumour markers. Glycoconj J 1995; 12: 200–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Glycosylation in Cancer and Oncogenic Transformation. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics