Skip to main content

Neurobiologische Grundlagen der Stirnhirnfunktionen

  • Chapter
Frontalhirn

Zusammenfassung

Der präfrontale Kortex bildet den Kortex des rostralen Pols der Hirnrinde. Die Kriterien seiner Abgrenzung gegenüber anderen neokortikalen Hirnregionen und damit das Verständnis dessen, was unter dem präfrontalen Kortex verstanden wird, ist historisch mehrfach revidiert worden und somit Ausdruck sich entwickelnder Paradigmen der Stirnhirnfunktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Akert K (1964) Comparative anatomy of the frontal cortex and thalamocortical connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behaviour. McGraw-Hill, New York, pp 372–396

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381

    PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal gangliothalamocortical circuits: parallel substrates for motor, oculomotor,,,prefrontal“ and „limbic” functions. In: Uylings HBM, Van Eden CG, De Bruin JPC et al. (eds) Progress in brain research, vol 85. Elsevier, Amsterdam, pp 119–146

    Google Scholar 

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology; nervous system, vol II. American Physiological Society, Bethesda, MD, pp 1448–1480

    Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306: 6–18

    Google Scholar 

  • Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21: 1399–1407

    PubMed  CAS  Google Scholar 

  • Baddeley AD (1992) Working memory. Science 255: 556–559

    CAS  Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower G (ed) Recent advances in learning and motivation, vol VIII. Academic Press, New York, pp 47–90

    Google Scholar 

  • Bailey P, Bonin G von (1951) The isokortex of man. University Illinois Press, Urbana

    Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286: 353–375

    PubMed  CAS  Google Scholar 

  • Barbas H, Pandya DN (1991) Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford University Press, New York, pp 35–58

    Google Scholar 

  • Barbas H, Haswell Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313: 65–94

    PubMed  CAS  Google Scholar 

  • Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184: 43–62

    PubMed  CAS  Google Scholar 

  • Björklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex. Evidence for a dopaminergic innervation of primate prefrontal cortex. Neurosci Lett 7: 115–199

    Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108 (3): 624–652

    PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Buechel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283: 1538–1541

    Google Scholar 

  • Carter CJ (1982) Topographical distribution of possible glutamatergic pathways from the fron- tal cortex to the striatum and substantia nigra in rats. Neuropharmacology 21: 379–383

    PubMed  CAS  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll DC, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749

    PubMed  CAS  Google Scholar 

  • Carter CS, MacDonald AM, Botvinick M, Ross LL, Stenger A, Noll D, Cohen JD (2000) Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proc Nail Acad Sci 97: 1944–1948

    Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79: 2919–2940

    PubMed  CAS  Google Scholar 

  • Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28: 168–186

    Google Scholar 

  • Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279: 1347–1351

    PubMed  CAS  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial working memory activate separate neural systems in human cortex. Cereb Cortex 6: 39–49

    PubMed  CAS  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7: 1–13

    Google Scholar 

  • D’Esposito M, Postle BR, Ballard D, Lease J (1999) Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn 41: 66–86

    PubMed  Google Scholar 

  • D’Esposito M, Postle BR, Rypma B (2000a) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133: 3–11

    PubMed  Google Scholar 

  • D’Esposito M, Ballard D, Zarahn E, Aguirre GK (2000b) The role of the prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage 11: 400–408

    PubMed  Google Scholar 

  • Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 6: 49–56

    Google Scholar 

  • Divac I, Mogenson 1 (1985) The prefrontal „cortex“ in the pigeon. Catecholamine histofluorescence. Neuroscience 15: 677–682

    Google Scholar 

  • Divac I, Holst MC, Nelson J, McKenzie JS (1987) Afferents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area. Brain Behav Evol 30: 303–320

    Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Cogn Sci 23: 475–483

    CAS  Google Scholar 

  • Elliott R, Frith CD, Dolan RJ (1997) Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35: 1395–1404

    PubMed  CAS  Google Scholar 

  • Fletcher et al. (1995) Other minds in the brain: a functional imaging study of „theory of mind in story comprehension. Cognition 57: 109–128

    Google Scholar 

  • Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63: 814–831

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65: 14641483

    Google Scholar 

  • Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212: 952–955

    PubMed  CAS  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe. Raven, New York

    Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77: 679–694

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci 15: 133–139

    PubMed  CAS  Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory-related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70: 216–220

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987a) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F (ed) Handbook of physiology: the nervous system, vol V. American Physiological Society, Bethesda, MD, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1987b) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1993) Specification of higher cortical functions. J Head Trauma Rehabil 8 (1): 13–23

    Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351: 1445–1453

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (2000) Localization of function all over again. Neuroimage 11: 451–457

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal ( MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–560

    Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Q J Quant Biol 55: 1025–1038

    CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15: 20–25

    PubMed  CAS  Google Scholar 

  • Gruber O (2000) Two different brain systems underlie phonological short-term memory in humans. Neuroimage 11 /5: S407

    Google Scholar 

  • Gruber O (2001) Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cerebral Cortex 11: 1047–1055

    PubMed  CAS  Google Scholar 

  • Gruber O, Cramon DY von (2001) Domain-specific distribution of working memory processes along human prefrontal and parietal cortices: a functional magnetic resonance imaging study. Neurosci Lett 297: 29–32

    PubMed  CAS  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys, Brain Res 817: 45–58

    PubMed  CAS  Google Scholar 

  • Haxby JV, Petit L, Ungerleider LG, Courtney SM (2000) Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuro-image 11: 380–391

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49: 1268–1284

    Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 85: 299–322

    Google Scholar 

  • LaBar KS, Gitelman DR, ParrishTB, Mesulam M-M (1999) Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 10: 695–704

    Google Scholar 

  • Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, Schwartz GE (1997) Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 11: 1437–1444

    Google Scholar 

  • McLean PD (1990) The triune brain in evolution: Role in paleocerebral functions. Plenum, New York, pp 519–563

    Google Scholar 

  • Mesulam M (1998) From sensation to cognition. Brain 121: 1013–1052

    PubMed  Google Scholar 

  • Miller EK (2000a) The prefrontal cortex and cognitive control. Nat Rev 1: 59–65

    CAS  Google Scholar 

  • Miller EK (2000b) The prefrontal cortex: no simple matter. Neuroimage 11: 447–450

    PubMed  CAS  Google Scholar 

  • Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263: 520–522

    PubMed  CAS  Google Scholar 

  • Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331: 68–70

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1971) The problem of the frontal lobe: a reinterpretation. J Psychiatr Res 8: 167–187

    PubMed  CAS  Google Scholar 

  • Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424–446

    PubMed  CAS  Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278: 1135–1138

    Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9: 459–475

    Google Scholar 

  • Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9: 1329–1339

    PubMed  CAS  Google Scholar 

  • Owen AM (2000) The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp Brain Res 133: 33–43

    PubMed  CAS  Google Scholar 

  • Owen AM, Lee ACH, Williams EJ (2000) Dissociating aspects of verbal working memory within the human frontal lobe: further evidence for a „process-specific“ model of lateral frontal organization. Psychobiology 28: 146–155

    Google Scholar 

  • Pandya DN,Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM,Van Eden CG, DeBraun JPC et al. (eds) Progress in brain research, vol 85. Elsevier, Amsterdam, pp 63–94

    Google Scholar 

  • Pardo JV, Pardo P, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87: 256–259

    PubMed  CAS  Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information in the primate prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351: 1455–1461

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036

    PubMed  CAS  Google Scholar 

  • Porrino LJ, Goldberg-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205: 63–76

    PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of operations in the human brain. Science 240: 1627–1631

    PubMed  CAS  Google Scholar 

  • Postle BR, Stern CE, Rosen BR, Corkin S (2000) An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage 11: 409–423

    PubMed  CAS  Google Scholar 

  • Preuss TM (1995) Do rats have a prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cog Neurosci 7: 1–24

    Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393: 577–579

    PubMed  CAS  Google Scholar 

  • Rakic P (1975) Local circuit neurons. Neurosci Res Progr Bull 13: 289–446

    Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276: 821–824

    PubMed  CAS  Google Scholar 

  • Reep R (1984) Relationship between prefrontal and limbic cortex: A comparative anatomical review. Brain Behav Evo125: 5–80

    Google Scholar 

  • Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294

    PubMed  CAS  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2: 1131–1136

    PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Pub Ass Res Nery Ment Dis 27: 210–232

    Google Scholar 

  • Rushworth MFS, Owen AM (1998) The functional organization of the lateral frontal cortex: conjecture or conjuncture in the electrophysiological literature? Trends Cogn Sci 2: 46–53

    PubMed  CAS  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Proebraschenskaja IS, Kukuew LA (1955) Atlas of the Cytoarchitectonics of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242

    PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661

    PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J, MarshuetzC, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95: 876–882

    CAS  Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. Raven, New York

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Tanji J, Kurata K (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalities. J Neurophysiol 53: 129–141

    Google Scholar 

  • Tanji J, Taniguchi K, Saga T (1980) Supplementary motor area: neuronal response to motor instructions. J Neurophysiol 43: 60–68

    PubMed  CAS  Google Scholar 

  • Thierry AM, Blanc G, Sobel A, Stinus L, Glowinski J (1973) Dopaminergic terminals in the rat cortex. Science 182: 499–501

    PubMed  CAS  Google Scholar 

  • Ullsperger M, Cramon DY von (2000) Error processing and response competition: a combined event-related fMRI and ERP study. Psychophysiology 37 (Suppl 1): S99

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle J, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for visual working memory. Proc Natl Acad Sci USA 95: 883–890

    PubMed  CAS  Google Scholar 

  • Uylings HBM, VanEden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85: 31–62

    PubMed  CAS  Google Scholar 

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375

    Google Scholar 

  • Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325: 241–254

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1993) A connectionist approach to the prefrontal cortex. J Neuropsychiatry 5: 241–253

    CAS  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126: 315–335

    PubMed  CAS  Google Scholar 

  • Wilson FAW, Scalaidhe SPO, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in the primate prefrontal cortex. Science 260: 1955–1957

    PubMed  CAS  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretzschmann HJ (1988) The pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179: 173–179

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruber, O., Arendt, T., Von Cramon, D.Y. (2002). Neurobiologische Grundlagen der Stirnhirnfunktionen. In: Förstl, H. (eds) Frontalhirn. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21917-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21917-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21918-8

  • Online ISBN: 978-3-662-21917-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics