Skip to main content

The Laplace Equation and other Steady-State Systems

  • Chapter
Digital Simulation in Electrochemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 23))

Abstract

The Laplace equation comes into electrochemistry for the calculation of potential distributions around electrodes. These are not time-dependent phenomena on the sort of time scale we operate in; the propagation of a voltage field through an electrolyte is practically instantaneous. So we are looking here for steady-state solutions. The term “digital simulation” has somewhat of a dynamic flavour and does not apply so well to this problem area, which is in a class quite different from transport in electrolytes. The finite-difference method is useful here also, but takes on a quite different character. One of the striking differences is the amount of computer-time and -memory usually needed; tho other is the empirical bag of tricks workers use to speed things up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Smith. “Numerical Solution of Partial Differential Equations”. Oxford IIP, 1969

    Google Scholar 

  2. G.E. Forsythe and W.R. Wasow, “Finite-Difference Methods for Partial Differential Equations”, Wiley, 1960.

    Google Scholar 

  3. R.N. Fleck, D.N. Hansen and C.W. Tobias, “Numerical evaluation of current distribution in electrical systems”; UCRL Rept. 11612, AEC accession no. 4050, 1964.

    Google Scholar 

  4. Z. Matyg, teska Spolëcnost Nauk. Praha. Tïída Matematicko—Piírodovédecka, Vëstnik, 30, 1 (1944).

    Google Scholar 

  5. H. Liebmann, Bayer. Akad. Wiss. math.-phys. Klasse, Sitz. 385 (1918).

    Google Scholar 

  6. S.P. Frankel, Math. Tables and Aids to Comput. 4, 65 (1950).

    Article  Google Scholar 

  7. D. Young, Trans. Am. Math. Soc. 76, 92 (1954).

    Article  Google Scholar 

  8. J. Newman, J. Electrochem. Soc. 113, 501 (1966).

    Article  CAS  Google Scholar 

  9. S. Sarangapani and R. DeLevie, J. Electroanal. Chem. 102, 165 (1979).

    Article  CAS  Google Scholar 

  10. K.B. Prater and A.J. Bard, J. Electrochem. Soc. 117, 207 (1970).

    Article  CAS  Google Scholar 

  11. S. Clarenbach and E.W. Grabner, Ber. Bunsenges. phys. Chem. 80, 115 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Britz, D. (1981). The Laplace Equation and other Steady-State Systems. In: Digital Simulation in Electrochemistry. Lecture Notes in Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21819-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21819-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10564-0

  • Online ISBN: 978-3-662-21819-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics